Everything in its right place?

Learning a user’s view of a music collection

Korinna Bade, Andreas Niirnberger, Sebastian Stober
Data & Knowledge Engineering Group, Otto-von-Guericke-University Magdeburg, D-39106 Magdeburg, Germany

Email: {korinna.bade,andreas.nuernberger,sebastian. stober} Qovgu.de

Abstract

Keeping one’s personal music collections well organized
can be a very tedious task. Fortunately, today, many
popular music players (such as AmaroK or iTunes) have
an integrated library function that can automatically
rename and tag music files and sort them into subdirecto-
ries. However, their common approach to stick with some
hierarchy of genre, artist name, and album title barely
represents the way a user would structure his collection
manually. When it comes to organizing a music collection
according to a user-specific hierarchy, three things are
required: First, the music files have to be described
by appropriate features beyond simple meta-tags. This
includes content-based analysis but also incorporation of
external information sources such as the web. Second,
knowledge about the user’s structuring preferences must
be available. And third, and most importantly, methods
for learning personalized hierarchies that can integrate
this knowledge are needed. We propose for this task
a hierarchical constraint based clustering approach that
can weight the importance of different features according
to the user perceived similarity. A hierarchy that is built
based on this similarity measure reflects a user’s view on
the collection.

Introduction

One of the big challenges of computer science in the 215
century is the digital media explosion. Steadily growing
hard-drives are filled with personal music collections.
With increasing collection size maintenance becomes
a more and more tedious task, but without manual
organization effort it gets harder to access specific pieces
of music or even to keep an overview. Typically, a
large portion of the digital content is just “collecting
dust” because the user has simply forgotten about it.
Commonly supported search methods that rely on simple
meta-data will not help to solve this problem as they
require that the user can specify what he is looking
for and further that the music is appropriately tagged.
Whilst the latter can be automatized to some extend,
the former obviously cannot be assumed when the user is
looking for music he has forgotten about. Here, methods
are needed that can help to improve awareness and
accessibility of such data.

Automatic structuring is one means to ease access to
music collections, be it for organization or for explo-
ration. Moreover, users would greatly benefit if a
system would not just structure the collection for easier
access but would provide a structure that is intuitively

understandable for the individual user since it is adapted
to personal preferences and needs. Unfortunately, such
aspects of individualization have been only a minor issue
of research in the field of music information retrieval so
far.

In this paper, we describe an approach that can adapt
a hierarchical structuring of a music collection to better
reflect user specific preferences. This takes into account
that individual users handle the same data differently,
having different views and a distinct focus. To achieve
this goal, the first important step is to model a user’s
structuring preferences. We present here an approach
based on constraints. Subsequently, different ways are
shown of how such preferences can be integrated into a
hierarchical agglomerative clustering approach in order
to obtain a personalized clustering. Finally, we discuss
possible generalizations and limitations of the proposed
approach — especially with respect to application on
music data. To begin with, we start with discussing
related work for structuring music data in the following
section, before our approach is described.

Related Work

The currently most common approach to structuring
music collections is to rely on meta-data — typically
the artist, album, year, and title tag — sometimes also
genre. With this information, tracks can be sorted into
a predefined directory structure. An alternative way
is to use a genre hierarchy as predefined structure and
organize the tracks according to an automatic genre
classification [3]. In contrast to these approaches, the one
presented here does not rely on a predefined structure but
organizes tracks solely based on their similarity.

Current work on structuring of music collections by simi-
larity is primarily focussed on flat structures. Concerning
hierarchical structures, some approaches exist that rely
on a growing hierarchical self-organizing map (GHSOM)
[6]: The SOM-enhanced Jukebox (SOMeJB) presented
in [7] uses a GHSOM to structure a music collection
hierarchically by music style. For the computation of
song similarities, psycho-acoustic models are applied.
Another system that relies on a GHSOM structuring
approach is described in [B]. Here, the collection is
structured on the artist level instead of individual songs.
The similarity of artists is computed using a web search
engine and standard text retrieval techniques.! The
system presented in [4] applies the original GHSOM

IOnline demo at http://www.ofai.at/~elias.pampalk/wa/

http://www.ofai.at/~elias.pampalk/wa/

approach for structuring the music collection based on
audio features. Additionally, web-based text information
is used to determine a representative prototype track for
each of the resulting clusters.

These GHSOM-based approaches are similar to the one
described here in that they automatically construct a
hierarchy for a music collection. However, the clustering
method chosen here is significantly different (e.g. it is
not prototype-based). Further, the mentioned systems
are lacking the ability to adapt the structuring according
to user preferences.

Modeling Structuring Preferences

In order to constrain the structuring process and influ-
ence the final clustering result, structuring preferences
of an individual user need to be modeled in a way that
allows for their integration into the automatic clustering
method. A common approach introduced by Wagstaff et
al. [1I] uses two types of pairwise constraints that define
the relation of two items: must-link and cannot-link
constraints. Must-link constraints require the two items
to be in the same cluster whereas cannot-link constraints
identify pairs of items that have to be assigned to
different clusters.

However, such constraints were introduced in the context
of flat clustering approaches. When it comes to building
cluster hierarchies their absolute formalization of con-
straints on cluster assignment (i.e., the items are either
in the same or a different cluster) is no longer appropriate
[10] because items are linked over different hierarchy
levels. On lower levels, two items might be separated,
but on higher levels, they could belong together. In
order to express hierarchical relations, we proposed must-
link-before (MLB) constraints [Il 2] with the goal to
stress the hierarchical order in which items are linked.
To achieve this, item pairs are replaced with triples
expressing relative relationships according to hierarchy
levels: The constraint MLB.,, = (iz,4y,1,) states that
items 4, and ¢, should be linked on a lower hierarchy
level than items i, and i, as shown in Figure

.
(sz,)
=X

L \
() '
Uy 1
P z
a \
i i

Figure 1: The MLB constraint (ig,%y,%.) in the hierarchy

MLB constraints can be easily extracted from different
sources: In [2] we describe how MLB constraints can be
derived from labeled data. For the application scenario of
this paper, this could be music files previously organized
in a folder hierarchy by the user. Such a hierarchy already
inherently describes some structuring preferences of the
user and should definitely be used. As an example,
consider a DJ’s music collection that may (partially)

be structured as shown in Figure The following
constraints reflect the hierarchical relation between
the tracks in the example: (tracke,tracks,track;),
(tracks, tracks, tracky), (tracks,tracky,tracks), and
(tracks,tracky,tracky). However, as a manually created
hierarchy might not always be available or detailed
enough, the following alternatives for collection of MLLB
constraints exist: In an active learning setting, the user
is directly asked to specify the hierarchical relationship
of an item triple whereas in an interactive setting, the
user alters an initially un-personalized structuring and
thereby generates constraints. The latter approach is
discussed in [9] for flat clusterings of music files.

(& ambient
& bar jazz
(& instrumental
& vocal
(4] track_4.mp3
(& cihll out
& dance
L 80s
[track_2.mp3

|| track_3.mp3
(& rock'n'roll
G salsa
(& standards
4] track_1.mp3

Figure 2: Example of a manually created music hierarchy.

Personalized Clustering

There are two fundamentally different methods to inte-
grate constraints into clustering. First, the individual
constraints can be directly integrated into the clustering
procedure. This is also called instance-based constrained
clustering and can be considered a lazy learning ap-
proach. Second, the constraints can be used to adapt the
similarity measure that will be applied during clustering.
The goal of this approach is to generalize the individual
constraints to get a broader formalization of the user’s
preferences through a personalized similarity measure.
For instance in the example above, rhythm and tempo
might be more relevant to the DJ than the lyrics or the
artist. In this case, rhythm- and tempo-related features
would be emphasized by the personalized similarity
measure.

In the following, the approaches and their applicability
to music data are briefly presented. A more thorough
discussion and an evaluation based on text data can be
found in [2]. The following approaches are all based
on hierarchical agglomerative clustering (HAC), which
produces a dendrogram, i.e., a hierarchical tree structure
on the data. The goal is to create a dendrogram,
which reflects the user’s structuring preferences, i.e.,
the MLB constraints, as much as possible. Since HAC
builds the dendrogram by starting with each item in an
individual cluster and then repeatedly merges the two
closest clusters until a single cluster is left, the only
prerequisite for applying HAC is to have a similarity
measure defined over the set of items. Hence, any
similarity measure on audio data can be used for applying

HAC to music tracks.

Instance-based Constrained Clustering

In comparison to must-link and cannot-link constraints,
MLB constraints can be easily integrated into hierarchi-
cal clustering. For HAC, the constraints are integrated
in the merging step such that merges occur only in
accordance with the given MLB constraints (or at least
with most of the constraints). This is achieved by
merging the two closest clusters from the set of possible
merges that do not violate any (or that violate the fewest)
given constraints. This means that for all constraints
(43,1y,15), the cluster containing i, can only be merged
with a cluster that either contains both, i, and iy, or
neither.

Please note that MLB constraints are item triples and
do not pose any restrictions on the item representa-
tion. Hence, the instance-based constrained clustering
approach can be applied to any kind of data including
audio data. Of course, a similarity measure is still
required for clustering.

Metric Learning

A personalized similarity measure can be learned in
two ways: either independent of the clustering [2] or
during clustering [1]. While the former allows to learn
the similarity measure off-line, the latter can take into
account "unlabeled” data, i.e., items that are not part of
any constraint. In the following, we will briefly outline
an approach for the first case.

This approach is of course metric dependent. Here, we
use a common approach from machine learning, which
is based on the representation of the raw data through
a numerical feature vector. Then, similarity of the
items is computed with the cosine similarity between
the respective vectors. Personalization is achieved by
weighting the individual dimensions of the vector space
according to user specific preferences. This leads to the
following adapted cosine similarity of two items:

n . y . y .
Zj:l Wile,jly,;

iz laliy |
Yy

(1)

simg (ig, iy) =

with |;I|1D' =

n
52
Z W5tz 5
j=1

n being the number of dimensions, 7, ; being the j-th
component of the original item vector, and w; being the
weight of feature j with w; > 0, and 22:1 w; =n. The
first condition makes the solution meaningful, the second
avoids extreme case solutions. The valid weighting of 1
for all features reflects the standard similarity.

The weights are learned using a gradient descent search.
During learning of the weights, all constraint triples
(13,1y,1,) are presented to the algorithm several times. If
the constraint is violated by the current similarity mea-
sure, the weighting is updated. A constraint is thereby

interpreted as a relation between item similarities:
(Igy 1y, 15) — (sIm(iy, by) > sim(iy, i5)). (2)

This means a constraint is violated, if the inequality is
violated. As HAC clusters more similar items first, obey-
ing the similarity relations should improve overall cluster
quality. However, this depends on the computation of
cluster similarities for clusters containing more than one
item (linkage method). The impact of the individual item
gets smaller the higher the level in the dendrogram.

The goal of the gradient descent is to minimize the error,

i.e., the number of constraint violations. This can be
achieved by maximizing
00y, = Simg (i, iy) — simeg(iy, i) (3)

for each (violated) constraint. This leads to the weight
update rule

(4)

w; = wj + nAw; = w; +

j j T NAw; i TN ow;
where 7 is the learning rate defining the step width of
each adaptation step. The final computation of Aw; after
differentiation is:

- - 1

- - . . . T2 T2
Awj =iy j(iyj —iz5) — §Slm1ﬁ(lﬂivzy)(21,j +1y.5)

1 . . . =2 =2
+§Slmm(@w,zz)<zm+zz,j) (5)

with %x,j = ix,j/|ix|u7'

However, this computation does not ensure the bounds
on w; given earlier. To achieve this, an additional step is
added that, first, sets all negative weights to 0 and then
normalizes the weights to sum up to n.

The learned metric is then used for similarity compu-
tation during the clustering. Hence, the same metric
can be used for clustering different data (based on the
same representation) without re-learning. Furthermore,
instance-based constrained clustering and metric learning
can be nicely combined. In this case, the metric is learned
first as just described. Afterwards, the instance-based
method is applied using the modified similarity.

Discussion

In the following, we want to discuss the generality of the
proposed approach. For a discussion of algorithm-specific
details please refer to [2].

The approach presented here was described for the HAC
algorithm. However, the fundamental ideas can easily be
transfered to other hierarchical clustering methods. As
an example, consider the instance-based approach and
its application to hierarchical divisive clustering (HDC)
like, e.g., GHSOM [6] or Bisecting k-Means [8]. As in
HAC, the main goal is to ensure the existence of the
intermediate cluster ¢z, (cf. Figure . While for HAC
this is achieved by prioritizing the merge of i, and i,

HDC needs to take care of separating ¢, from i, and i,
before splitting the latter.

Furthermore, the metric learning approach was specifi-
cally demonstrated for a vector representation in combi-
nation with the cosine similarity. This can be generalized
to a similarity measure that combines individual feature
similarities. Commonly, this is realized through a sum.
In this case an integration of feature weights could look
like this:

Z?:l w;sim; (ig,j, iy,;)

Z?:l wj

(6)

simg (ig, iy) =

Generally, any aggregating function could be applied
instead of the sum as well. The only requirement for
subsequent metric learning is differentiability. Equation
M is applicable to any of these similarity measures.
Naturally, the differentiation result (Equation [5)) will be
different respectively.

Most hierarchical clustering approaches build a hierarchy,
where each item is directly assigned to a single cluster. Of
course, an item is also indirectly contained in all super-
clusters. However, it may not be further assigned to
any other cluster. Nevertheless, a user might actually
associate a track with several clusters. The underlying
reason can be twofold: First, the user might consider
different aspects. For instance, the DJ in our example
in Figure [2] might want to sort his tracks additionally
into the common artist/album-hierarchy to easily handle
artist-specific requests from the audience. This can be
supported best by several (parallel) hierarchies, each
describing a distinct view on the collection based on
specific aspects. Each individual hierarchy can be learned
separately with the presented approach. Second, a
track could have two distinct characteristics regarding
a single aspect. For instance, a track may belong to
two genres with no dominant one. In such rare cases,
the algorithm cannot help. In fact, it is not even clear,
how a user would handle such a case manually and it
is questionable, whether allowing multiple direct cluster
assignments might really be helpful here. Most likely, it
would rather confuse the user. Still, this remains an open
question that should be studied more thoroughly.

Conclusions

In this paper, we outlined an approach that can adapt
a hierarchical structuring of a music collection to better
reflect user specific preferences modeled by constraints.
Different ways are shown on how such constraints can
be integrated into a hierarchical agglomerative clustering
approach in order to obtain a personalized clustering.
Further, we discussed how the described method can be
generalized for application on other hierarchical cluster-
ing approaches and pointed out possible limitations.

Acknowledgements

This work is supported by the German Research Founda-
tion (DFG) and the German National Merit Foundation.

References

1]

2]

[10]

[11]

K. Bade and A. Niirnberger. Personalized
hierarchical clustering. In Proc. of the 2006 IEEE /
WIC / ACM Intl. Conf. on Web Intelligence, 2006.

K. Bade and A. Nirnberger. Creating a cluster
hierarchy under constraints of a partially known
hierarchy. In Proc. of the 2008 SIAM Intl. Conf.
on Data Mining, 2008.

S. Brecheisen, H.-P. Kriegel, P. Kunath, and
A. Pryakhin. Hierarchical genre classification for
large music collections. In Proc. of the 2006 IEEE
Intl. Conf. on Multimedia and Ezpo (ICME’06),
2006.

M. Dopler, M. Schedl, T. Pohle, and P. Knees.
Accessing Music Collections via Representative
Cluster Prototypes in a Hierarchical Organization
Scheme. In Proc. of the 9th Intl. Conf. on Music
Information Retrieval (ISMIR’08), 2008.

E. Pampalk, A. Flexer, and G. Widmer. Hierarchical
organization and description of music collections at
the artist level. In Proc. of the 9th FEuropean Conf.

on Research and Advanced Technology for Digital
Libraries (ECDL’05), 2005.

A. Rauber, D. Merkl, and M. Dittenbach. The
growing hierarchical self-organizing map: Ex-
ploratory analysis of high-dimensional data. IFEFE
Transactions on Neural Networks, 13:1331-1341,
2002.

A. Rauber, E. Pampalk, and D. Merkl. Using
psycho-acoustic models and self-organizing maps to
create a hierarchical structuring of music by musical
styles. In Proc. of the 3rd Intl. Conf. on Music
Information Retrieval (ISMIR’02), 2002.

M. Steinbach, G. Karypis, and V. Kumar. A
comparison of document clustering techniques.
Technical Report 00-034, University of Minnesota,
2000.

S. Stober and A. Niirnberger. Towards user-adaptive
structuring and organization of music collections. In
Proc. of 6th Intl. Workshop on Adaptive Multimedia
Retrieval (AMR’08), 2008.

K. Wagstaff and C. Cardie. Clustering with
instance-level constraints. In Proc. of the 17th Intl.
Conf. on Machine Learning, 2000.

K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl.
Constrained k-means clustering with background
knowledge. In Proc. of 18th Intl. Conf. on Machine
Learning, 2001.

