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ABSTRACT

The chord progression of a song is an important high-level
feature which enables indexing as well as deeper analysis of
musical recordings. Different approaches to chord recogni-
tion have been suggested in the past. Though their perfor-
mance increased, still significant error rates seem to be un-
avoidable. One way to improve accuracy is to try to correct
possible misclassifications. In this paper, we propose a post-
processing method based on considerations of musical har-
mony, assuming that the pool of chords used in a song is lim-
ited and that strong oscillations of chords are uncommon. We
show that exploiting (uncertain) knowledge about the chord-
distribution in a chord’s neighbourhood can significantly im-
prove chord detection accuracy by evaluating our proposed
post-processing method for three baseline classifiers on two
early Beatles albums.

1. INTRODUCTION

The development of space-saving high quality audio formats,
increase in storing capacity on computer hard disks and fast
internet connections have boosted the spread of audio files
containing music on computer platforms all over the world.
To describe this content in a way that enables indexing and
eventually searching beyond tags and keywords, suitable mid-
and high-level features are required. Such a feature describing
the harmonic content of a song is the progression of chords.
Commonly, a chord is defined as a set of tones played at the
same time. However, a looser definition also allows for tones
not played simultaneously to form a chord, provided that they
are to be interpreted as somehow belonging together. This
makes chord determination a challenge even if music is avail-
able in symbolic notation. The problem is even harder, if the
music is only available in raw audio format, as the single tones
must be extracted from the musical signal. Hence, for chord
recognition from audio signals, recognition errors have to be
expected and handled.

We roughly divide the general approach to chord detec-
tion into three steps: Feature extraction, chord classification,
and post-processing. In the first step, suitable features need
to be extracted from the raw data. These features can then be

used by a classifier to predict a chord, while using more robust
features can significantly improve the accuracy of the classi-
fication. The third step tries to correct unavoidable misclas-
sifications caused, e.g., by the presence of percussive sounds
or harmonics. Here, the inclusion of musical theory or simple
musical principles can help discovering possible errors and
help avoiding them. This generalisation of the process of
chord recognition outlined above is suggested by us to ease
analysis and comparison of different approaches as a whole
and distinct parts of it individually. A thorough study of cur-
rent methods in the field (presented in Section 2) shows that
it is sensible to do so.

The main scope of this paper is to propose and evaluate
a post-processing step that can be applied independently of
the features and classifier used. The only requirement for the
classifier is to provide confidence or probability values for
each chord. In the following, we first discuss related work
in Section 2. Section 3.1 and 3.2 briefly describe the feature
extraction step and classification step, respectively, to outline
the context in which our post-processing method is applied.
The post-processing step is explained in detail in Section 3.3.
Subsequently, Section 4 presents the results of a preliminary
evaluation. Finally, we point out directions for future research
in Section 5 and draw conclusions in Section 6.

2. RELATED WORK

Sheh and Ellis showed in [2] that for the purpose of chord
recognition of real-world musical recordings the chromagram
feature, as introduced by Fujishima [1] outperformed other
features. At the same time, their approach, which was based
on the Hidden Markov Model (HMM), allowed for improve-
ments: Using the flat start initialisation for the Expectation
Maximization (EM) training, they avoided to provide hand-
labelled aligned training data, the preparation of which is time-
consuming. However flat start’s inherent assumption is sim-
plifying, so their HMM was insufficiently trained, in particu-
lar with regard to the quite big chord alphabet of 127 chords,
they tried to model. Thus, their recognition rates evaluated
on two Beatles songs were poor. 18 other Beatles songs were
used for training.

Bello and Pickens improved this approach [3]. They only



Approach of Classifier Post-Processing
Fujishima [1] Scalar product/Euclidean distance none

with hand-tuned chord templates
Sheh, Ellis [2] Single Gaussian (Σ purely diagonal), Viterbi on EM-trained transition matrix (TM)

flat start EM-trained
Bello, Pickens [3] Single Gaussian, manually specified Viterbi on meaningful initialised + EM-trained TM
Lee, Slaney [4] Single Gaussian (Σ purely diagonal), Viterbi on supervised-trained TM

supervised trained with aligned training data
Maddage et al. [5] 3 Gaussians, supervised-trained Viterbi on EM-trained TM +

initialisation (STI) + EM-trained key- and measure-based enhancements
Shenoy, Wang [6] Pattern matching (?) key- and measure-based enhancements
Burgoyne, Saul [7] Dirichlet, STI + EM-trained Viterbi on manually specified TM
Yoshioka et al. [8] Mahalanobis distance hypothesis search (also considering

bass tones & common chord progression patterns)
Papadopoulos, Single Gaussian (supervised-trained or Viterbi on EM-trained or supervised-trained TM or

Peeters [9] manually specified) or Correlation Computation manually specified TM (2 variants)

Table 1. Classification and post-processing steps of other chord recognition systems

trained a part of the HMM, while the other part was initialised
based on music theoretic considerations and was not changed.
Hence, they avoided to train the HMM by the use of any la-
belled training data (neither aligned, nor not aligned) at all.
Moreover, they applied beat detection to adjust the size of a
chroma window to the time between two beats to overcome
problems caused by transient components in the sound. Ad-
ditionally, they used a simple approach to chroma prepro-
cessing, considering slightly different tuning of instruments.
Their results (tested on a much smaller chord alphabet) were
considerably better. They evaluated their system on two early
Beatles albums.

Lee and Slaney [4] also followed a HMM-based approach
and presented a method of automatic generation of aligned la-
belled training data. They collected musical pieces that were
available in a symbolic format. It is possible to recognise
chords on this format, and they used a software system to
solve this task. Chord labels suggested by the system were
mapped to audio file synthesised from the symbolic format.
The resulting annotated audio file was accepted as ground-
truth. That way, they were able to generate a large amount of
training data and used this data to train the HMM.

A HMM, employed in a similar fashion as in Sheh and
Ellis’ approach, is used by Maddage et al. [5]. Besides the
use of a more fine-grained resolution of the chromagram, the
modelling of one chord with three states, the use of a more
complex output distribution and the provision of generated
training samples for each chord, Maddage et al. incorporate
a post-processing step to correct possible misclassifications.
It requires the detection of measures (based on beats) and the
detection of the key, which is done for a 16 measure long
window. Chords not in the detected key are disallowed and
are replaced by other chords with high probability or with the
previous chord.

This post-processing step is similar to the one of Shenoy

and Wang [6]. However those do not use a HMM to deter-
mine the likely chords but a simpler classifier described more
detailed though not yet unambiguously in [10]. In contrast to
Maddage et al., their correction is not based on probabilities,
as those are not provided by their classifier, but on rules con-
sidering the available chords in a measure. Another difference
is, that their detected key is valid for the whole song.

This is a ‘simplifying assumption’ that is ‘especially lim-
iting’, claimed by Burgoyne and Saul in [7]. Hence they
avoid this assumption and model each possible chord present
in each possible key as a single state in a HMM. They use
Dirichlet distribution to model the emission probabilities and
manually set the large transition matrix based on a model of
harmonic relationship between chords and keys. Their per-
ception of chords and keys being inseparable properties of a
given harmony is also assisted by Yoshioka et al. [8]. How-
ever their chord detection approach is quite different:

Yoshioka et al. start at the beginning of a song and progress
beat by beat, meanwhile creating hypotheses about the key
and chord progression of a song until the front beat. Likely
hypotheses are followed while highly unlikely hypotheses are
pruned after a while. At the end of the song the most probable
path is chosen as the chord progression. The score for a cer-
tain chord’s prediction in a hypothesis is calculated based on
three facts: A matching of the chromagram with a chord tem-
plate, the dominant bass tone and the compliance with com-
mon chord progression patterns.

A closer look at the approaches described above reveals
that in a way they use musical knowledge to enhance a possi-
ble misclassification. We define a post-processing step to be
contained in a chord detection system as whenever the pre-
diction of the classification function is not the final output of
system. In that way, all the systems can be interpreted as to
contain a post-processing step. Table 1 shows the different
post-processing steps in the right column and the classifiers



Fig. 1. Generalisation of the chord recognition process

used in the middle column. Fig. 1 once again illustrates our
generalisation of the chord recognition process. In the case of
HMMs the post-processing is implicitly done in the Viterbi
decoding. The Viterbi decoding is an algorithm that finds the
optimal path in a sequence of states based firstly on the simi-
larity of the observed chroma vector to the state output proba-
bility distribution and secondly on the transition probabilities
contained in the transition matrix. See [11] for a tutorial to
HMMs.

In a large-scale study [9], Papadopoulos and Peeters ex-
amine different choices of transition matrices for HMM-based
chord detection. They show that manually set values based on
music knowledge and set once for all songs to be evaluated are
superior to those obtained by an unsupervised EM-training,
which tries to get a sense of the harmonic movement of the
song, that it is presently evaluated.

Although this holds for the application of the Viterbi, we
still believe that the roughly extractable harmonic movement
of a piece contains important knowledge which can and should
be exploited to refine classification. Thus we propose an alter-
native post-processing step which integrates this knowledge.
It is based on the histograms of chords in a chord’s neighbour-
hood and does not need any information about the key of the
song. It can be combined with any classifier as long as the
classifier returns a score for every chord (i.e. not only the one
most probable chord).

3. PROCESS OF CHORD RECOGNITION

Our approach to chord recognition is described in compli-
ance with Fig. 1. The main contribution of our work is
the histogram-based smoothing step (i.e step 3) presented de-
tailed in Section 3.3. To show its universal applicability we
tested it in on three different classifiers, which we describe
in Section 3.2. First we explain the feature extraction in the
following section.

3.1. Feature Extraction

The first step of the three-step approach is the extraction of
the chromagram feature from an audio recording. For many
approaches to chord recognition, this feature is still the fea-
ture of choice, though some report to get better results with
features derived from it [12]. A chromagram is determined
by transforming a signal into the frequency domain (either by
a Short-Time Fourier Transform or a Constant-Q-Transform),
and mapping the calculated intensities in the frequency bins
to the pitches occurring in music. Subsequently, the pitches
covering several octaves are mapped to just one octave, in a
way that every pitch’s intensity is added to the pitch class of
its chroma (i.e. its musical tone), resulting in a 12 dimen-
sional vector of pitch classes. This pitch class vector, also
called the chromagram or just chroma, provides information
about the intensities of the musical tones over the whole spec-
trum covered, missing the information of the octave heights
of the tones. This is a sensible simplification, as it is assumed
that a musical chord is composed of several tones, occurring
in different octaves while the octave has no meaning for the
detection of the chord.1

For the extraction of the chromagram features, we used
the Sonic Visualiser [13] software. We decided to consider
only a small frequency band of three octaves between 65,41
Hz and 523,25 Hz. Although this discards low bass tones and
high voice or some high guitar tones, most important pitches
for chord recognition are contained in this span. We also re-
duce the risk of wrong classification due to the presence of
misleading harmonics, as only the lowest tones will have their
misleading third or fifth or even higher harmonic in our pitch
range. The second or fourth harmonic do not hamper chord
recognition that much as they fall into the same pitch class as
the fundamental.

We also account for instruments tuned deviant from the
standard concert pitch of 440 Hz in a similar way as described
in [14]. This step is quite important, especially for the early
Beatles albums we evaluated on, as deviant tunings are com-
mon for these records.

Using a beat detection system included in the Sonic Vi-
sualiser software, the beat times of a song are extracted. We

1It should be remarked that this assumption is questionable as tones in
the lower octaves, i.e. bass tones, may have higher influence on the chord’s
specification.



average the chromagrams located between two beats to form
new chromagram vectors with larger and more meaningful
window size. This common practice approach is based on the
assumption that chords often change at beat times. As the
time between two beats is longer than a chromagram window,
averaging the windows between two beats will also do some
smoothing.

Although the beat detection algorithm has problems in de-
tecting the beats for some parts of songs correctly, we accept
their recognition and do not correct them. We believe that er-
rors in beat detection do not have bad influence on our results.
Our simplifying assumption that chord changes occur at beats
is altered to the assumption that chord changes occur at times
with strong note onsets, which is one main feature the beat
detection is based on.

3.2. Naive Prediction

In the second step, we use a classifier to predict the chord,
solely based on the chromagram feature extracted in the previ-
ous step. We call this naive prediction to state the fact that this
prediction might differ from our final prediction, which addi-
tionally incorporates knowledge of musical principles. For
our approach, it is a requirement that the classifier does not
only predict the most probable chord, but returns a proba-
bility or confidence for every possible chord considering the
chromagram observed.

The chord alphabet we want to predict comprises just the
12 major and 12 minor chords. Other chords like diminished,
augmented, seventh or other complex chords are mapped to
major and minor depending on their third. E.g., an E dimin-
ished seventh chord would be mapped on an E minor chord
as it contains a minor third.

We use three different classifiers in order to demonstrate
that the post-processing technique described in the follow-
ing section can be used in combination with arbitrary clas-
sifiers as long as they met the above stated requirement. The
first classifier predicts a similarity score, calculating the scalar
product between the chromagram vector and a chord tem-
plate. The chord template contains a 1 if the tone is part of the
chord and a 0 if it is not. So, if the order of tones in a chro-
magram vector is C,C],D,...,A],B, a C-Major chord template
has the following format (1,0,0,0,1,0,0,1,0,0,0,0), see Fig. 2.
For the C]-Major chord the template looks similar with every
number shifted to the right by one. Likewise a C-Minor chord
template looks in the following way (1,0,0,1,0,0,0,1,0,0,0,0).
Notice the minor third in contrast to the major third in the ma-
jor chord template. This classifier, which is also used in [14],
is simple but yields quite good results. Moreover, it does not
only predict one chord but additionally gives a score for ev-
ery chord. For our approach, each score is divided by the
sum of all scores, so that it can be considered as a probabil-
ity. It is denoted as P (Chroma|ci) i ∈ [1, 24] and describes
the probability to observe the chroma vector Chroma given

Fig. 2. The C-Major Chord Template

chord ci.
The second classifier calculates its values as the Maha-

lanobis distance between the chroma vector Chroma and a
distribution, represented by a mean vector µ and its associated
covariance matrix Σ. The Mahalanobis distance is defined as:

d(Chroma, µ) =
√

(Chroma− µ)T Σ−1(Chroma− µ)

The mean and covariance matrix are calculated from some
training samples provided (see Section 4). This classifier is
used in [8]. It is basically also used in those HMM approaches
that use a single multivariate Gaussian to model their output
distribution, which is done in [2], [3], [4] and [9], as the calcu-
lated distance and the calculated value of the output distribu-
tion can be transformed into each other (i.e. the ranking is the
same). From the distance, we calculate a similarity measure
as sim = 1− d

dmax
.

The third classifier is a naive bayes classifier2. As re-
quired for our approach, this classifier returns a probability
for every chord. However, the probabilities from this clas-
sifier tend to be rather extreme. Often many chords have a
probability close to 0, whereas only a small set of chords has
high probabilities. This nature of the probability distribution
makes this classifier less suitable. Nevertheless, we show that
for sensibly chosen parameters, an improvement of recogni-
tion rates can still be achieved.

3.3. Smoothing

In this step we attempt to correct mistakes in the naive pre-
dictions obtained by the classifiers described in the preceding
section. This smoothing step is motivated by the fact that
music, to sound harmonically, does not have too many shifts,
and repetition of musical patterns is more likely than steady
change. This hypothesis is supported by the fact that most
songs are written in a certain key, which constraints the choice
of chords and can stabilise chord recognition. For a certain
unknown chord, it is more likely to be one of the chords out
of the pool of neighbouring chords than to be just an arbitrary
other chord. Thus, we suggest to enhance chord recognition

2included in the Information Miner software developed at the Otto-von-
Guericke-University in Magdeburg,
http://fuzzy.cs.uni-magdeburg.de/



Fig. 3. Top: Naive predicted chord sequence (only most
probable chord, i.e. r = 1); Middle: corresponding
neighbourhood histogram; Bottom: Smoothed Histogram
(virtAppFactor = 2, relBonus = 0)

by considering the chords in a certain neighbourhood. There-
fore every chord is regarded as the center of a sliding window
containing n chords. From these chords a histogram of the
chord distribution is created including only the most probable
chord for each chroma vector (see Fig. 3, Top and Middle).
The bin-frequencies of the histogram are divided by n so that
the histogram can be considered as the probability distribu-
tion of the chords in the neighbourhood, which we denote as
P (ci). The new probability of each chord ci given the re-
spective chromagram Chroma is calculated according to the
bayesian theorem as:

P (ci|Chroma) =
P (Chroma|ci) ∗ P (ci)

P (Chroma)
(1)

Note, that no information about P (Chroma) is required as
it is only a normalisation constant to obtain values that sum
up to 1. If only the rank but not the probability of a chord is
interesting, it can simply be discarded, as it does not have any
influence on the ranking of the chords. In case, a probability
value is required, it is sufficient to divide all values obtained
by discarding P (Chroma) by their sum.

In this approach, the probabilityP (ci|Chroma) for chords

that are not predicted at least once in the window is 0, be-
cause they have a marginal probability P (ci) of 0. Especially
for small windows this appears to be too restrictive. To avoid
zero marginal probabilities, one possibility is to add a con-
stant number of virtual appearance to all bins which is calcu-
lated as n ∗ virtAppFactor (see Fig. 3, Bottom).

Alternatively, apart from the most probable chord, the next
rmost probable chords for each chroma vector could be added
to the histogram as well. This, however, raises the question of
how to weight the different chords. We define the value vi to
be added to the histogram for a chord ranked at position i as

vi =
PRank=i − PRank=r+1

PRank=1 − PRank=r+1

where PRank=i denotes the probability of the chord that is
ranked at position i. If, for example, the 3 most probable
chords have probabilities of 0.06, 0.052 and 0.05 and r = 2,
then the bin frequency of the most probable chord is increased
by 1, and the bin frequency of the second most probable chord
is increased by 0.2.

Further, we define a measure of reliability, which is high if
the prediction of the most probable chord is relatively certain
and low if the difference to the second most probable chord is
just marginal and thus the prediction is doubtful. It is defined
as:

Rel = PRank=1 ∗ (PRank=1 − PRank=2)

All the reliability values of the predicted chords in a window
are compared and a reliability bonus relBon added to the his-
togram bin of the most reliable chord. The bonus for the other
chords decreases in the same manner as for ranked histogram
probabilities, such that for the least reliable chord a bonus of
0 remains.

The smoothed chord change version of the song can then
be smoothed further. While the factorP (Chroma|ci) in equa-
tion 1 is only based on our classification function and thus
is not changed, the factor P (ci) is based on the histogram.
This histogram, however, may have changed after the first
smoothing step, as its new calculation is based on the val-
ues P (ci|Chroma). Thus further iterations of the smoothing
step based on the updated histogram may further improve the
results. The number of additional iterations is denoted with k.

All the above parameters influence the smoothing and we
tested the impact of different parameter combinations on the
performance of the chord prediction. Results are discussed in
the next section.

4. EVALUATION

We tested our approach on the two early Beatles albums Please
Please Me and Beatles For Sale - data which is also used for
evaluation in [3], [12] and [14]. The ground truth chord an-
notations were kindly provided by C. Harte.



Baseline accuracy Average accuracy Accuracy
(all parameter combinations) (best parameters)

Please Please Me 56.42% 64.12% 69.05%
Beatles For Sale 63.91% 69.10% 74.02%
Overall 60.16% 66.61% 71.62%

Table 2. Accuracies before and after the smoothing step using scalar product classifier.

Baseline accuracy Average accuracy Accuracy
(all parameter combinations) (best parameters)

Please Please Me 54.60% 62.64% 72.52%
Beatles For Sale 62.81% 65.87% 75.56%
Overall 58.70% 64.25% 74.04%

Table 3. Accuracies before and after the smoothing step using the Mahalanobis distance based classifier.

Scalar product similarity classifier For the first clas-
sifier we investigated different parameter settings. Through-
out our experiments, small window sizes yielded better re-
sults than larger ones. The best results were obtained with
a window containing only 4 chromas. We tested the follow-
ing parameters: window size n ∈ {4, 8, 16, 32}; factor mul-
tiplied by n to determine the number of virtual appearances
in a histogram virtAppFactor ∈ {2, 5, 10}; worst rank of a
chord to be included in the histogram r ∈ {1, 2, 3, 12, 24};
bonus value to be added to the bin of the most reliable chord
relBonus ∈ {0, 1, 3} and number of additional iterations
k ∈ {0, 1, 2, 3, 4}. This meant an overall amount of 900
parameter combinations. The results are shown in Table 2.
In general the post-processing led to an improvement of the
detection accuracy. In only 4% of all tested parameter combi-
nations the accuracy decreased. In average there was a rela-
tive increase by 10.72%. For the best parameter combination
(4,5,3,1,4) there was a relative accuracy increase by 19.05%.

Mahalanobis distance classifier In contrast to the scalar
product classifier, Mahalanobis distance classifier as well as
the naive bayes classifier need to be trained on training data.
We took our training samples from two other Beatles albums
namely With The Beatles and A Hard Day’s Night. We tested
the second classifier with the same parameters as for the first.
While the increase of accuracy for some promising parame-
ters is again large, there is a higher risk of oversmoothing and
thus decreasing the accuracy. This happened for 18 % of the
cases. However for small window sizes of 4 or 8, the his-
togram smoothing performed well. The best accuracy with
a relative increase of 26,13 % was reached with parameters
(4,10,12,1,4) (see Table 3).

Naive bayes classifier As already stated in Section 3.2,
we had to choose different parameters for the naive bayes
classifier. This is due to the fact that for the naive bayes classi-
fier, very few chords or just one chord dominates the probabil-
ity distribution and has high distance to the following chords,
so that it is unlikely that any correction will occur, if the clas-
sifier probabilities are multiplied with a highly smoothed his-

togram. Therefore, it is important not to donate too much
initial appearance to the empty bins in the histogram, hence
choosing a low virtAppFactor. This was approved by our
tests where a virtAppFactor of 0 performed best. The pa-
rameters tested for this classifier are: n ∈ {8, 16, 32, 128, 1000},
virtAppFactor ∈ {0, 0.5}, r ∈ {1, 3, 12}, relBonus ∈
{0, 2} and k ∈ {0, 1, 2, 3, 4}. The best results were obtained
independently of the choice of the parameters r and relBonus,
with the other parameters set to n = 1000 (which meant that
the ‘neighbourhood’ histograms comprise the chords of the
whole song), virtAppFactor = 0 and k = 2 or k = 3. The
results of our post-processing step for this classifier were not
as good as for the other classifiers. This may be due to the
worse baseline accuracy, so that the enhancements relied on
less accurate data. The results are presented in Table 4.

Judging our results, we can see that our post-processing
step significantly improves recognition accuracy which holds
for three different classifiers we tested. However we also must
compare our results to others. This is difficult as a credible
comparison of post-processing methods requires the use of
the same baseline classifier as well as the same chord alphabet
to be considered and the same test set of songs. Maddage et
al. and Shenoy and Wang at least provide accuracy numbers
before and after their key-based post-processing. Shenoy and
Wang also use the same chord alphabet as we do, but they
do not evaluate on Beatles data. Although we avoid a direct
comparison, we consider the accuracy rate of their system as a
whole as very good. This may be partly due to their inclusion
of measure detection. This is not yet included in our approach
and might further improve our results. Apart from this, our
approach does not make the limiting assumption that a song
only contains chords belonging to a key but allows harmonic
shifts. This may be an advantage as key changes (e.g. for
the last repeated chorus) are not that uncommon in modern
popular music.

Comparing our post-processing to the Viterbi decoding
step of the HMM is also difficult. HMM-based publications
do not provide the results of the classifier before the decoding,



Baseline accuracy Average accuracy Accuracy
(all parameter combinations) (best parameters)

Please Please Me 49.85% 52.49% 54.25%
Beatles For Sale 60.81% 63.98% 66.50%
Overall 55.02% 58.24% 60.37%

Table 4. Accuracies before and after the smoothing step using the naive bayes classifier.

as they consider it an inseparable part of the model. However
Bello and Pickens’ classifier (though not identical) is similar
to our Mahalanobis classifier and the test set is the same. The
results of both approaches only differ by 1% (their 75,04% to
our 74,04%), so both methods seem to be nearly equally good.
To get a reliable comparison we implemented the Viterbi by
ourselves and get the same results: The Viterbi with a man-
ually set transition matrix based on the double nested circle
of fifth (see [9]) reaching 74,68% with the best chosen pa-
rameter ε was only marginal superior to our Histogram based
smoothing. With a transition-matrix based on the correlation
between key profiles [15] it performed with 70,54% consider-
ably worse although it performed better than its double nested
circle of fifth variant in the experiments in [9].

The good results of the Viterbi may be due to fact, that
the transition matrix-based path search favours chord changes
between chords of close harmonic relation. This is a sensible
assumption and not yet integrated in our approach. However,
Viterbi does not consider the roughly extractable harmonic
movement of the piece, which in turn is integrated in our ap-
proach. We believe that combining both will further enhance
recognition accuracies.

5. FUTURE WORK

As stated above, our approach does not account for the fact,
that some chord changes are more probable than others. This
knowledge can be derived from the theory of musical har-
mony and we currently study ways to integrate it into our ap-
proach.

To further improve our results, we also consider to include
a measure detection and incorporate knowledge gained there-
from into our system. The good results of [5] and [10] showed
the potential of this information. We also think of a special
treatment of bass tone intensities, either in a classifier or in
the smoothing step. The bass tone may be valuable informa-
tion for the recognition of a chord.

As far as our work so far is concerned, we plan to further
investigate relations and dependencies between the probabil-
ity distribution output of the classifier, the choice of the pa-
rameters and their impact on the recognition rates. A way of
normalising the classifier output distribution may make our
smoothing step less sensitive to parameter settings.

To make analysis more substantiated, we plan to extend
our evaluation. So far it only comprised two of 11 Beatles al-

bums, which were chosen to compare our approach to others.
Next, we intend to extend the evaluation on the full Beatles
corpus. This may give insight in how our approach works
on more sophisticated music, as the later Beatles albums got
more complex in instrumentation as well as in musical har-
monies.

6. CONCLUSIONS

In our paper, we present an approach for enhancement of
chord detection accuracy. It works with a probability based
classifier and uses the uncertain information of the chord dis-
tribution around a chord to aid a chord’s prediction. It is
assumed that for a chord to be determined, it is more likely
to be from a pool of chords in the neighbourhood, than to
be any other arbitrary chord. Though the idea is relatively
simple, it shows promising results for three different classi-
fiers we tested. However the absolute recognition rates of
our approach are still improvable in our current state of work.
We believe that improvements can be achieved by combining
knowledge about the roughly extracted harmonic movement
of the piece with the static knowledge about chord changes as
stated by music theory.

We compared our approach to the Viterbi algorithm, which
we consider to be the post-processing step of the widely-used
Hidden Markov Models. Good results of both approaches
show the potential and the need of a post-processing of a pre-
liminary prediction of a classifier. This will make the chord
recognition more robust and the chord progression of a song
a more robust high-level feature to describe audio content for
applications especially in the area of Music Information Re-
trieval.

7. ACKNOWLEDGEMENTS

The authors would like to thank Christopher Harte for shar-
ing his high-quality annotation data for the complete Beatles
corpus and the developers of the Sonic Visualiser tool. The
bayesian classifier was kindly provided by Christian Borgelt
and Matthias Steinbrecher.

8. REFERENCES

[1] Takuya Fujishima, “Realtime chord recognition of mu-
sical sound: A system using common lisp music,” in



Proceedings of the International Computer Music Con-
ference (ICMC), Beijing, 1999, pp. 464–467.

[2] Alexander Sheh and Daniel P. W. Ellis, “Chord segmen-
tation and recognition using em-trained hidden markov
models.,” in Proceedings of the 4th International Con-
ference on Music Information Retrieval (ISMIR), 2003.

[3] Juan Pablo Bello and Jeremy Pickens, “A robust mid-
level representation for harmonic content in music sig-
nals.,” in Proceedings of the 6th International Confer-
ence on Music Information Retrieval (ISMIR), 2005, pp.
304–311.

[4] Kyogu Lee and Malcolm Slaney, “Automatic chord
recognition from audio using a supervised hmm trained
with audio-from-symbolic data,” in AMCMM ’06: Pro-
ceedings of the 1st ACM workshop on Audio and music
computing multimedia, New York, NY, USA, 2006, pp.
11–20, ACM Press.

[5] Namunu Chinthaka Maddage, Changsheng Xu, Mo-
han S. Kankanhalli, and Xi Shao, “Content-based music
structure analysis with applications to music semantics
understanding,” in Proceedings of the 12th ACM Inter-
national Conference on Multimedia, 2004, pp. 112–119.

[6] Arun Shenoy and Ye Wang, “Key, chord, and rhythm
tracking of popular music recordings,” Computer Music
Journal, vol. 29, no. 3, pp. 75–86, 2005.

[7] John Ashley Burgoyne and Lawrence K. Saul, “Learn-
ing harmonic relationships in digital audio with
dirichlet-based hidden markov models,” in Proceedings
of the Sixth International Conference on Music Informa-
tion Retrieval (ISMIR), 2005.

[8] Takuya Yoshioka, Tetsuro Kitahara, Kazunori Ko-
matani, Tetsuya Ogata, and Hiroshi G. Okuno, “Au-
tomatic chord transcription with concurrent recognition
of chord symbols and boundaries.,” in Proceedings of
the 5th International Conference on Music Information
Retrieval (ISMIR), 2004.

[9] Hélène Papadopoulos and Geoffroy Peeters, “Large-
scale study of chord estimation algorithms based on
chroma representation and hmm,” in Proceedings of the
International Workshop on Content-Based Multimedia
Indexing, 2007.

[10] Arun Shenoy, Roshni Mohapatra, and Ye Wang, “Key
determination of acoustic musical signals,” in Proceed-
ings of the IEEE International Conference on Multime-
dia and Expo, 2004.

[11] Lawrence R. Rabiner, “A tutorial on hidden markov
models and selected applications in speech recognition,”
Proceedings of the IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[12] Kyogu Lee and Malcolm Slaney, “A unified system
for chord transcription and key extraction using hidden
markov models,” in Proceedings of the 8th Interna-
tional Conference on Music Information Retrieval (IS-
MIR), 2007.

[13] Chris Cannam, Christian Landone, Mark B. Sandler,
and Juan Pablo Bello, “The sonic visualiser: A visual-
isation platform for semantic descriptors from musical
signals,” in Proceedings of the 7th International Con-
ference on Music Information Retrieval (ISMIR), 2006,
pp. 324–327.

[14] Christopher A. Harte and Mark B. Sandler, “Automatic
chord identification using a quantised chromagram,” in
Proceedings of the 118th Audio Engineering Society’s
Convention, 2005.

[15] Katy Noland and Mark Sandler, “Key estimation using
a hidden markov model,” in Proceedings of the 7th In-
ternational Conference on Music Information Retrieval
(ISMIR), 2006, pp. 121–126.


