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ABSTRACT

Electroencephalography (EEG) recordings of rhythm percep-
tion might contain enough information to distinguish different
rhythm types/genres or even identify the rthythms themselves.
In this paper, we present first classification results using deep
learning techniques on EEG data recorded within a rhythm
perception study in Kigali, Rwanda. We tested 13 adults,
mean age 21, who performed three behavioral tasks using
rhythmic tone sequences derived from either East African
or Western music. For the EEG testing, 24 rhythms — half
East African and half Western with identical tempo and based
on a 2-bar 12/8 scheme — were each repeated for 32 sec-
onds. During presentation, the participants’ brain waves were
recorded via 14 EEG channels. We applied stacked denois-
ing autoencoders and convolutional neural networks on the
collected data to distinguish African and Western rthythms on
a group and individual participant level. Furthermore, we in-
vestigated how far these techniques can be used to recognize
the individual rhythms.

1. INTRODUCTION

Musical rhythm occurs in all human societies and is related to
many phenomena, such as the perception of a regular empha-
sis (i.e., beat), and the impulse to move one’s body. However,
the brain mechanisms underlying musical rhythm are not
fully understood. Moreover, musical thythm is a universal
human phenomenon, but differs between human cultures, and
the influence of culture on the processing of rhythm in the
brain is uncharacterized.

In order to study the influence of culture on rhythm pro-
cessing, we recruited participants in East Africa and Canada
to test their ability to perceive and produce rhythms derived
from East African and Western music. Besides behavioral
tasks, which have already been discussed in [4], the East
African participants also underwent electroencephalography
(EEG) recording while listening to East African and Western
musical thythms thus enabling us to study the neural mech-
anisms underlying rhythm perception. We were interested
in differences between neuronal entrainment to the periodic-
ities in East African versus Western rhythms for participants
from those respective cultures. Entrainment was defined as
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the magnitudes of steady state evoked potentials (SSEPs) at
frequencies related to the metrical structure of rhythms. A
similar approach has been used previously to study entrain-
ment to rhythms [17, 18].

But it is also possible to look at the collected EEG data
from an information retrieval perspective by asking questions
like How well can we tell from the EEG whether a participant
listened to an East African or Western rhythm? or Can we
even say from a few seconds of EEG data which rhythm some-
body listened to? Note that answering such question does
not necessarily require an understanding of the underlying
processes. Hence, we have attempted to let a machine figure
out how best to represent and classify the EEG recordings
employing recently developed deep learning techniques. In
the following, we will review related work in Section 2, de-
scribe the data acquisition and pre-processing in Section 3
present our experimental findings in Section 4, and discuss
further steps in Section 5.

2. RELATED WORK

Previous research demonstrates that culture influences per-
ception of the metrical structure (the temporal structure of
strong and weak positions in rhythms) of musical rhythms
in infants [20] and in adults [16]. However, few studies have
investigated differences in brain responses underlying the cul-
tural influence on rhythm perception. One study found that
participants performed better on a recall task for culturally fa-
miliar compared to unfamiliar music, yet found no influence
of cultural familiarity on neural activations while listening to
the music while undergoing functional magnetic resonance
imaging (fMRI) [15].

Many studies have used EEG and magnoencephalogra-
phy (MMEG) to investigate brain responses to auditory rhythms.
Oscillatory neural activity in the gamma (20-60 Hz) frequency
band is sensitive to accented tones in a rhythmic sequence and
anticipates isochronous tones [19]. Oscillations in the beta
(20-30 Hz) band increase in anticipation of strong tones in a
non-isochronous sequence [5,6, 10]. Another approach has
measured the magnitude of SSEPs (reflecting neural oscilla-
tions entrained to the stimulus) while listening to rhythmic
sequences [17, 18]. Here, enhancement of SSEPs was found
for frequencies related to the metrical structure of the rthythm
(e.g., the frequency of the beat).

In contrast to these studies investigating the oscillatory ac-
tivity in the brain, other studies have used EEG to investigate
event-related potentials (ERPs) in responses to tones occur-
ring in thythmic sequences. This approach has been used to
show distinct sensitivity to perturbations of the rhythmic pat-



tern vs. the metrical structure in rhythmic sequences [7], and
to suggest that similar responses persist even when attention
is diverted away from the rhythmic stimulus [12].

In the field of music information retrieval (MIR), retrieval
based on brain wave recordings is still a very young and un-
explored domain. So far, research has mainly focused on
emotion recognition from EEG recordings (e.g., [3, 14]). For
rhythms, however, Vlek et al. [23] already showed that imag-
ined auditory accents can be recognized from EEG. They
asked ten subjects to listen to and later imagine three sim-
ple metric patterns of two, three and four beats on top of a
steady metronome click. Using logistic regression to clas-
sify accented versus unaccented beats, they obtained an av-
erage single-trial accuracy of 70% for perception and 61%
for imagery. These results are very encouraging to further
investigate the possibilities for retrieving information about
the perceived rhythm from EEG recordings.

In the field of deep learning, there has been a recent in-
crease of works involving music data. However, MIR is
still largely under-represented here. To our knowledge, no
prior work has been published yet on using deep learning
to analyze EEG recordings related to music perception and
cognition. However, there are some first attempts to process
EEG recordings with deep learning techniques.

Waulsin et al. [24] used deep belief nets (DBNs) to de-
tect anomalies related to epilepsy in EEG recordings of 11
subjects by classifying individual “channel-seconds”, i.e., one-
second chunks from a single EEG channel without further
information from other channels or about prior values. Their
classifier was first pre-trained layer by layer as an autoencoder
on unlabelled data, followed by a supervised fine-tuning with
backpropagation on a much smaller labeled data set. They
found that working on raw, unprocessed data (sampled at
256Hz) led to a classification accuracy comparable to hand-
crafted features.

Langkvist et al. [13] similarly employed DBNs combined
with a hidden Markov model (HMM) to classify different
sleep stages. Their data for 25 subjects comprises EEG as
well as recordings of eye movements and skeletal muscle ac-
tivity. Again, the data was segmented into one-second chunks.
Here, a DBN on raw data showed a classification accuracy
close to one using 28 hand-selected features.

3. DATA ACQUISITION & PRE-PROCESSING
3.1 Stimuli

African rhythm stimuli were derived from recordings of tra-
ditional East African music [1]. The author (DC) composed
the Western rhythmic stimuli. Rhythms were presented as
sequences of sine tones that were 100ms in duration with in-
tensity ramped up/down over the first/final 50ms and a pitch
of either 375 or 500 Hz. All rhythms had a temporal structure
of 12 equal units, in which each unit could contain a sound
or not. For each rhythmic stimulus, two individual rhythmic
sequences were overlaid — each at a different pitch. For each
cultural type of rhythm, there were 2 groups of 3 individual
rhythms for which rhythms could be overlaid with the others
in their group. Because an individual rhythm could be one

Table 1. Rhythmic sequences in groups of three that pairings
were based on. All ‘x’s denote onsets. Larger, bold ‘X’s
denote the beginning of a 12 unit cycle (downbeat).

Western Rhythms
1 X x x X X X X X X X X X
2 X x X X X X
3 X X X X x x X X X X X X X X X
4 X X X x X X X X X X X
5 X x X X x x x X
6 X X X x X x x X X X X X X X X X
East African Rhythms
1 X X X x X x x X X X X X X X X X X
2 X X x X
3 X X X X
4 X X X X X X X X
5 X X X X X X
6 X X X X X X X X X X

of two pitches/sounds, this made for a total of 12 rhythmic
stimuli from each culture, each used for all tasks. Further-
more, thythmic stimuli could be one of two tempi: having a
minimum inter-onset interval of 180 or 240ms.

3.2 Study Description

Sixteen East African participants were recruited in Kigali,
Rwanda (3 female, mean age: 23 years, mean musical train-
ing: 3.4 years, mean dance training: 2.5 years). Thirteen of
these participated in the EEG portion of the study as well as
the behavioral portion. All participants were over the age of
18, had normal hearing, and had spent the majority of their
lives in East Africa. They all gave informed consent prior to
participating and were compensated for their participation, as
per approval by the ethics boards at the Centre Hospitalier
Universitaire de Kigali and the University of Western Ontario.
After completion of the behavioral tasks, electrodes were
placed on the participant’s scalp. They were instructed to
sit with eyes closed and without moving for the duration of
the recording, and to maintain their attention on the auditory
stimuli. All rhythms were repeated for 32 seconds, presented
in counterbalanced blocks (all East African rhythms then all
Western rthythms, or vice versa), and with randomized order
within blocks. All 12 rhythms of each type were presented
— all at the same tempo (fast tempo for subjects 1-3 and 7-9,
and slow tempo for the others). Each rhythm was preceded
by 4 seconds of silence. EEG was recorded via a portable
Grass EEG system using 14 channels at a sampling rate of
400Hz and impedances were kept below 10k(2.

3.3 Data Pre-Processing

EEG recordings are usually very noisy. They contain artifacts
caused by muscle activity such as eye blinking as well as pos-
sible drifts in the impedance of the individual electrodes over
the course of a recording. Furthermore, the recording equip-
ment is very sensitive and easily picks up interferences from
the surroundings. For instance, in this experiment, the power
supply dominated the frequency band around 50Hz. All these
issues have led to the common practice to invest a lot of effort



into pre-processing EEG data, often even manually rejecting
single frames or channels. In contrast to this, we decided to
put only little manual work into cleaning the data and just re-
moved obviously bad channels, thus leaving the main work to
the deep learning techniques. After bad channel removal, 12
channels remained for subjects 1-5 and 13 for subjects 6—13.

We followed the common practice in machine learning to
partition the data into training, validation (or model selec-
tion) and fest sets. To this end, we split each 32s-long trial
recording into three non-overlapping pieces. The first four
seconds were used for the validation dataset. The rationale
behind this was that we expected that the participants would
need a few seconds in the beginning of each trial to get used
to the new rhythm. Thus, the data would be less suited for
training but might still be good enough to estimate the model
accuracy on unseen data. The next 24 seconds were used for
training and the remaining four seconds for testing.

The data was finally converted into the input format re-
quired by the neural networks to be learned. ' If the network
just took the raw EEG data, each waveform was normalized
to a maximum amplitude of 1 and then split into equally sized
frames matching the size of the network’s input layer. No win-
dowing function was applied and the frames overlapped by
75% of their length. If the network was designed to process
the frequency spectrum, the processing involved:

1. computing the short-time Fourier transform (STFT) with
given window length of 64 samples and 75% overlap,

2. computing the log amplitude,

scaling linearly to a maximum of 1 (per sequence),

4. (optionally) cutting of all frequency bins above the number
requested by the network,

5. splitting the data into frames matching the network’s input
dimensionality with a given hop size of 5 to control the
overlap.

e

Here, the number of retained frequency bins and the input
length were considered as hyper-parameters.

4. EXPERIMENTS & FINDINGS

All experiments were implemented using Theano [2] and
pylearn2 [8].2 The computations were run on a dedicated
12-core workstation with two Nvidia graphics cards — a Tesla
C2075 and a Quadro 2000.

As the first retrieval task, we focused on recognizing whe-
ther a participant had listened to an East African or Western
rhythm (Section 4.1). This binary classification task is most
likely much easier than the second task — trying to predict
one out of 24 rhythms (Section 4.2). Unfortunately, due to
the block design of the study, it was not possible to train a
classifier for the tempo. Trying to do so would yield a clas-
sifier that “cheated” by just recognizing the inter-individual
differences because every participant only listened to stimuli
of the same tempo.

! Most of the processing was implemented through the librosa library
available at https://github.com/bmcfee/librosa/.

2 The code to run the experiments is publicly available as supplemen-
tary material of this paper at http://dx.doi.org/10.6084/m9.
figshare.1108287

As the classes were perfectly balanced for both tasks, we
chose the accuracy, i.e., the percentage of correctly classified
instances, as evaluation measure. Accuracy can be measured
on several levels. The network predicts a class label for
each input frame. Each frame is a segment from the time
sequence of a single EEG channel. Finally, for each trial,
several channels were recorded. Hence, it is natural to also
measure accuracy also at the sequence (i.e, channel) and trial
level. There are many ways to aggregate frame label predic-
tions into a prediction for a channel or a trial. We tested the
following three ways to compute a score for each class:

o plain: sum of all 0-or-1 outputs per class

e fuzzy: sum of all raw output activations per class

e probabilistic: sum of log output activations per class
While the latter approach which gathers the log likelihoods
from all frames worked best for a softmax output layer, it
usually performed worse than the fuzzy approach for the
DLSVM output layer with its hinge loss (see below). The
plain approach worked best when the frame accuracy was
close to the chance level for the binary classification task.
Hence, we chose the plain aggregation scheme whenever the
frame accuracy was below 52% on the validation set and
otherwise the fuzzy approach.

We expected significant inter-individual differences and
therefore made learning good individual models for the partic-
ipants our priority. We then tested configuration that worked
well for individuals on three groups — all participants as well
as one group for each tempo, containing 6 and 7 subjects
respectively.

4.1 Classification into African and Western Rhythms
4.1.1 Multi-Layer Perceptron with Pre-Trained Layers

Motivated by the existing deep learning approaches for EEG
data (cf. Section 2), we choose to pre-train a MLP as an
autoencoder for individual channel-seconds — or similar fixed-
length chunks — drawn from all subjects. In particular, we
trained a stacked denoising autoencoder (SDA) as proposed
in [22] where each individual input was set to 0 with a cor-
ruption probability of 0.2.

We tested several structural configurations, varying the
input sample rate (400Hz or down-sampled to 100Hz), the
number of layers, and the number of neurons in each layer.
The quality of the different models was measured as the
mean squared reconstruction error (MSRE). Table 2 gives
an overview of the reconstruction quality for selected con-
figurations. All SDAs were trained with tied weights, i.e.,
the weight matrix of each decoder layer equals the transpose
of the respective encoder layer’s weight matrix. Each layer
was trained with stochastic gradient descent (SGD) on mini-
batches of 100 examples for a maximum of 100 epochs with
an initial learning rate of 0.05 and exponential decay.

In order to turn a pre-trained SDA into a multilayer percep-
tron (MLP) for classification, we replaced the decoder part
of the SDA with a DLSVM layer as proposed in [21]. * This
special kind of output layer for classification uses the hinge

3 We used the experimental implementation for pylearn2 provided by Kyle
Kastner at https://github.com/kastnerkyle/pylearn2/
blob/svm_layer/pylearn2/models/mlp.py
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Table 2. MSRE and classification accuracy for selected SDA (top, A-F) and CNN (bottom, G-I) configurations.

neural network configuration MSRE MLP Classification Accuracy (for frames, channels and trials) in %
id (sample rate, input format, hidden layer sizes) train  test indiv. subjects fast (1-3, 7-9) slow (4-6, 10-13) all (1-13)
A 100Hz, 100 samples, 50-25-10 (SDA for subject2) 4.35 4.17  61.1 655 724 587 60.6 61.1 53.7 56.0 59.5 535 56.6 60.3
B 100Hz, 100 samples, 50-25-10 3.19 307 581 620 667 581 60.7 61.1 535 577 57.1 52.1 535 545
C 100Hz, 100 samples, 50-25 1.00 096 617 659 712 58.6 623 632 544 564 57.1 534 548 564
D 400Hz, 100 samples, 50-25-10 0.54 053 517 589 622 503 506 500 500 51.8 512 50.1 502 50.0
E 400Hz, 100 samples, 50-25 036 034 608 659 71.8 563 586 660 520 550 560 499 50.1 56.1
F 400Hz, 80 samples, 50-25-10 033 032 520 599 625 523 539 549 505 535 554 50.2 51.0 503
G 100Hz, 100 samples, 2 conv. layers 62.0 639 676 57.1 579 597 499 502 50.0 51.7 528 529
H 100Hz, 200 samples, 2 conv. layers 640 648 679 582 585 61.1 495 49.6 50.6 50.9 502 50.6
I 400Hz, 1s freq. spectrum (33 bins), 2 conv. layers 69.5 70.8 747 58.1 58.0 59.0 538 545 53.0 537 539 52.6
400Hz, 2s freq. spectrum (33 bins), 2 conv. layers 722 726 776 576 575 604 529 529 548 53.1 535 523
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Figure 1. Boxplot of the frame-level accuracy for each indi-
vidual subject aggregated over all configurations. >

loss as cost function and replaces the commonly applied soft-
max. We observed much smoother learning curves and a
slightly increased accuracy when using this cost function for
optimization together with rectification as non-linearity in
the hidden layers. For training, we used SGD with dropout
regularization [9] and momentum, a high initial learning rate
of 0.1 and exponential decay over each epoch. After train-
ing for 100 epochs on minibatches of size 100, we selected
the network that maximized the accuracy on the validation
dataset. We found that the dropout regularization worked
really well and largely avoided over-fitting to the training
data. In some cases, even a better performance on the test
data could be observed. The obtained mean accuracies for
the selected SDA configurations are also shown in Table 2
for MLPs trained for individual subjects as well as for the
three groups. As Figure 1 illustrates, there were significant
individual differences between the subjects. Whilst learning
good classifiers appeared to be easy for subject 9, it was much
harder for subjects 5 and 13. As expected, the performance
for the groups was inferior. Best results were obtained for
the “fast” group, which comprised only 6 subjects including
2 and 9 who were amongst the easiest to classify.

We found that two factors had a strong impact on the
MSRE: the amount of (lossy) compression through the au-
toencoder’s bottleneck and the amount of information the

5 Boxes show the 25th to 75th percentiles with a mark for the median
within, whiskers span to furthest values within the 1.5 interquartile range,
remaining outliers are shown as crossbars.

network processes at a time. Configurations A, B and D had
the highest compression ratio (10:1). C and E lacked the third
autoencoder layer and thus only compressed at 4:1 and with a
lower resulting MSRE. F had exactly twice the compression
ratio as C and E. While the difference in the MSRE was
remarkable between F and C, it was much less so between
F and E — and even compared to D. This could be explained
by the four times higher sample rate of D—F. Whilst A-E
processed the same amount of samples at a time, the input for
A-C contained much more information as they were looking
at 1s of the signal in contrast to only 250ms. Judging from the
MSRE, the longer time span appears to be harder to compress.
This makes sense as EEG usually contains most information
in the lower frequencies and higher sampling rates do not nec-
essarily mean more content. Furthermore, with growing size
of the input frames, the variety of observable signal patterns
increases and they become harder to approximate. Figure 2
illustrates the difference between two reconstructions of the
same 4s raw EEG input segment using configurations B and
D. In this specific example, the MSRE for B is ten times as
high compared to D and the loss of detail in the reconstruc-
tion is clearly visible. However, D can only see 250ms of the
signal at a time whereas B processes one channel-second.

Configuration A had the highest MSRE as it was only
trained on data from subject 2 but needed to process all other
subjects as well. Very surprisingly, the respective MLP pro-
duced much better predictions than B, which had identical
structure. It is not clear what caused this effect. One ex-
planation could be that the data from subject 2 was cleaner
than for other participants as it also led to one amongst the
best individual classification accuracies. ® This could have
led to more suitable features learned by the SDA. In general,
the two-hidden-layer models worked better than the three-
hidden-layer ones. Possibly, the compression caused by the
third hidden layer was just too much. Apart from this, it
was hard to make out a clear “winner” between A, C and E.
There seemed to be a trade-off between the accuracy of the
reconstruction (by choosing a smaller window size and/or
higher sampling rate) and learning more suitable features

6 Most of the model/learning parameters were selected by training just
on subject 2.
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Figure 2. Input (blue) and its reconstruction (red) for the same 4s sequence from the test data. The background color indicates
the squared sample error. Top: Configuration B (100Hz) with MSRE 6.43. Bottom: Configuration D (400Hz) with MSRE 0.64.
(The bottom signals shows more higher-frequency information due to the four-times higher sampling rate.)

Table 3. Structural parameters of the CNN configurations.

input convolutional layer 1 convolutional layer 2
id dim. shape patterns pool stride shape patterns pool stride
G 100x1  15x1 10 7 1 70x1 10 7 1
H 200x1 25x1 10 7 1 151x1 10 7 1
I 22x33 1x33 20 5 1 9x1 10 5 1
J 47x33 1x33 20 5 1 9x1 10 5 1

for recognizing the rhythm type at a larger time scale. This
led us to try a different approach using convolutional neural
networks (CNNGs) as, e.g., described in [11].

4.1.2 Convolutional Neural Network

We decided on a general layout consisting of two convolu-
tional layers where the first layer was supposed to pick up
beat-related patterns while the second would learn to recog-
nize higher-level structures. Again, a DLSVM layer was used
for the output and the rectifier non-linearity in the hidden
layers. The structural parameters are listed in Table 3. As
pooling operation, the maximum was applied. Configurations
G and H processed the same raw input as A—F whereas I and
J took the frequency spectrum as input (using all 33 bins).
All networks were trained for 20 epochs using SGD with a
momentum of 0.5 and an exponential decaying learning rate
initialized at 0.1.

The obtained accuracy values are listed in Table 2 (bottom).
Whilst G and H produced results comparable to A-F, the
spectrum-based CNNss, I and J, clearly outperformed all other
configurations for the individual subjects. For all but sub-
jects 5 and 11, they showed the highest frame-level accuracy
(c.f. Figure 1). For subjects 2, 9 and 12, the trial classification
accuracy was even higher than 90% (not shown).

4.1.3 Cross-Trial Classification

In order to rule out the possibility that the classifiers just
recognized the individual trials — and not the rhythms — by
coincidental idiosyncrasies and artifacts unrelated to rhythm
perception, we additionally conducted a cross-trial classifica-
tion experiment. Here, we only considered all subjects with
frame-level accuracies above 80% in the earlier experiments
—1i.e., subjects 2, 9 and 12. We formed 144 rhythm pairs by
combining each East African with each Western rhythm from

the fast stimuli (for subjects 2 and 9) and the slow ones (for
subject 12) respectively. For each pair, we trained a classi-
fier with configuration J using all but the two rhythms of the
pair. ” Due to the amount of computation required, we trained
only for 3 epochs each. With the learned classifiers, the mean
frame-level accuracy over all 144 rhythm pairs was 82.6%,
84.5% and 79.3% for subject 2, 9 and 12 respectively. These
value were only slightly below those shown in Figure 1, which
we considered very remarkable after only 3 training epochs.

4.2 Identifying Individual Rhythms

Recognizing the correct rhythm amongst 24 candidates was
a much harder task than the previous one — especially as all
candidates had the same meter and tempo. The chance level
for 24 evenly balanced classes was only 4.17%. We used
again configuration J as our best known solution so far and
trained an individual classifier for each subject. As Figure 3
shows, the accuracy on the 2s input frames was at least twice
the chance level. Considering that these results were obtained
without any parameter tuning, there is probably still much
room for improvements. Especially, similarities amongst the
stimuli should be considered as well.

5. CONCLUSIONS AND OUTLOOK

We obtained encouraging first results for classifying chunks of
1-2s recorded from a single EEG channel into East African or
Western rhythms using convolutional neural networks (CNNs)
and multilayer perceptrons (MLPs) pre-trained as stacked
denoising autoencoders (SDAs). As it turned out, some con-
figurations of the SDA (D and F) were especially suited to
recognize unwanted artifacts like spikes in the waveforms
through the reconstruction error. This could be elaborated in
the future to automatically discard bad segments during pre-
processing. Further, the classification accuracy for individual
rhythms was significantly above chance level and encourages
more research in this direction. As this has been an initial and
by no means exhaustive exploration of the model- and lean-
ing parameter space, there seems to be a lot more potential —
especially in CNNs processing the frequency spectrum — and

7 Deviating from the description given in Section 3.3, we used the first
4s of each recording for validation and the remaining 28s for training as the
test set consisted of full 32s from separate recordings in this special case.



subject 1 2 3 4

5 6 7 8 9 10 11 12 13 mean

accuracy 15.8%

True label

precision @3

mean reciprocal rank  0.31  0.27  0.27

9.9% 12.0% 21.4% 10.3% 13.9% 16.2% 11.0% 11.0% 10.3%
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Figure 3. Confusion matrix for all subjects (left) and per-subject performance (right) for predicting the rhythm (24 classes).

we will continue to look for better designs than those consid-
ered here. We are also planning to create publicly available
data sets and benchmarks to attract more attention to these
challenging tasks from the machine learning and information
retrieval communities.

As expected, individual differences were very high. For
some participants, we were able to obtain accuracies above
90%, but for others, it was already hard to reach even 60%.
We hope that by studying the models learned by the classi-
fiers, we may shed some light on the underlying processes
and gain more understanding on why these differences occur
and where they originate. Also, our results still come with a
grain of salt: We were able to rule out side effects on a trial
level by successfully replicating accuracies across trials. But
due to the study’s block design, there remains still the chance
that unwanted external factors interfered with one of the two
blocks while being absent during the other one. Here, the
analysis of the learned models could help to strengthen our
confidence in the results.

The study is currently being repeated with North America

participants and we are curious to see whether we can repli-
cate our findings. Furthermore, we want to extend our focus
by also considering more complex and richer stimuli such
as audio recordings of rhythms with realistic instrumentation
instead of artificial sine tones.
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