

### User Modeling for Interactive User-Adaptive Collection Structuring

#### Sebastian Stober, Andreas Nürnberger

Faculty of Computer Science Otto-von-Guericke University Magdeburg



05.07.2007, AMR '07



### Contents

- Motivation
- Basics
  - Document Representation
  - (Growing) Self-Organizing Map
  - Generic Adaptation Approach
- Formalization as Quadratic Optimization
- Experiments and Results
- Conclusions



- Scenario: exploration of conference proceedings
- Generate an overview map



Better: individual structuring

 Iearned from user-interaction with the map (reassigning objects by drag & drop actions)



#### Seismic-electric effect study of mountain rocks

Measurements of seismic-electric effect (SEE) of mountain rocks in laboratory on guided waves were continued with very wide collection of specially prepared samples ...



vector = "document fingerprint" (TFxIDF, normalized)





- competitive learning
- additionally neighborhood relations defined
- all vectors w<sub>i</sub> in a neighborhood of the winner neuron c are adjusted:

$$\forall i: w_i = w_i + v(c, i) \cdot \delta \cdot (w_i - x(t))$$

- v(i,c) : neighborhood function
- $\delta$  : learning rate











### **Generic Adaptation Approach**



- User manually moves a document
- Similarity measure is adapted
- Other documents are automatically assigned to other cells

Group

Information

Retrieval

### **Generic Adaptation Approach**

• Standard similarity measure for documents  $x_j$  and  $x_k$ : inner product:

$$sim(x_j, x_k) = \sum_{l=1}^m x_{jl} \cdot x_{kl}$$

(assuming normalized feature vectors)

• Introduction of feature weights  $w_l$  to personalize similarity:

$$sim(x_j, x_k) = \sum_{l=1}^m x_{jl} \cdot w_l \cdot x_{kl}$$

- Initial weights are 1.0
- Weight vector w is used as user model

nformation

Retrieval



## Retrieval Problems & Limitations

- So far: heuristics to compute new weights
- No limitations for values of the weights
  - Extreme weighting schemes
- No formal guaranty that all manually moved objects are assigned to their target cell
- No additional constraints (e.g. to increase interpretability)

New approach: using Quadratic Optimization



### Retrieval Evaluation by User Simulation

modify objects by adding random features learn map on modified objects

repeat

froup

select an object o to be moved

select most similar cell c for o according to user move o to c

until o could not be moved

|                     |        | cell selection |            |
|---------------------|--------|----------------|------------|
|                     |        | greedy         | random     |
| object<br>selection | greedy | scenario 1     | scenario 3 |
|                     | random | scenario 2     | scenario 4 |

### nformation Experiment 1 - Setup

- 1914 documents from a scientific news archive represented by 800 index terms
- no class information
- Greedy selection heuristic:
  - Cell with lowest average pairwise (ground truth) similarity
  - Object with lowest average pairwise (ground) truth) similarity with all other objects in the cell
  - Target cell selection:
    - Cell with highest (ground truth) similarity

froup

etrieval

### Retrieval Experiment 1 - Results

- Top-10 precision increased to 0.82-0.97 (mean 0.93)
- Moving ~1% of the collection was sufficient
- Random selection did not yield worse results

#### simulation terminated too early (system inconsistent)



Group

### Retrieval Experiment 2 - Setup

- 10% (947 documents) from the Banksearch dataset (pre-classified into 4/11 classes) represented by 800 index terms
- Greedy selection heuristic:
  - Cell with highest frequency difference of minoritymajority class(es)
  - Object belonging to a minority class with lowest average pairwise (ground truth) sim. with all other objects in the cell
- Target cell selection:
  - Cell with highest (ground truth) similarity having the class of the object to be moved as majority class

Group

#### nformation **Experiment 2 - Results**

- Purity, inverse purity and f-measure came close to / exceeded the baseline (due to additional information)
- Top-10 precision decreased after a peak (not optimized by heuristic)
- Manually moving 1-2% of all objects was sufficient



etrieval



- Proposed and evaluated method for useradaptive collection structuring based on quadratic optimization
- User model: personalized similarity measure
- Only tested for text other (non-sparse) data might lead to different performance
  - Future Work:
    - Open problem: Sometimes no solution
    - Application to multimedia data
    - User study with "real" users

froup



### Thank you for your attention!

# Retrieval Experimental Setup

- User study:
  - expensive, time consuming, not objective
- Alternative way: simulate user actions
  - User (ground truth) similarity = initial similarity measure on unmodified objects

Group

#### nformation **Experimental Setup**

- User study:
  - expensive, time consuming, not objective
- Alternative way: simulate user actions
  - 2 similarity measures:
  - Select and move object according to a ground truth similarity
  - Measure impact

Group

etrieval





05.07.2007, A