
User Modelling for Interactive User-Adaptive

Collection Structuring

Andreas Nürnberger and Sebastian Stober

Institute for Knowledge and Language Engineering,
Faculty of Computer Science

Otto-von-Guericke-University Magdeburg, D-39106 Magdeburg, Germany
{nuernb,stober}@iws.cs.uni-magdeburg.de

Abstract. Automatic structuring is one means to ease access to docu-
ment collections, be it for organization or for exploration. Of even greater
help would be a presentation that adapts to the user’s way of structur-
ing and thus is intuitively understandable. We extend an existing user-
adaptive prototype system that is based on a growing self-organizing map
and that learns a feature weighting scheme from a user’s interaction with
the system resulting in a personalized similarity measure. The proposed
approach for adapting the feature weights targets certain problems of
previously used heuristics. The revised adaptation method is based on
quadratic optimization and thus we are able to pose certain contraints
on the derived weighting scheme. Moreover, thus it is guaranteed that
an optimal weighting scheme is found if one exists. The proposed ap-
proach is evaluated by simulating user interaction with the system on
two text datasets: one artificial data set that is used to analyze the per-
formance for different user types and a real world data set – a subset of
the banksearch dataset – containing additional class information.

1 Introduction

In many domains users are interested in information that they cannot clearly
specify, e.g. by some keywords. For example, a journalist might be researching
the background of his current article or someone might look for new music that
fits his taste. In such everyday exploratory search scenarios, usually large data
collections are accessed. Structuring is one means to ease these tasks, especially
if it reflects the user’s personal interests and thus is intuitively understandable.
Unfortunately, except for the user’s own collections, personalized structuring is
not generally available.

In previous work, we presented an user-adaptive retrieval system consider-
ing the task of organizing an unstructured collection. An initially unpersonal-
ized structure is learned with a growing self-organizing map which provides an
overview of the collection. The user can then work with this representation,
search and access objects and move items on the map that he feels should be
located elsewhere. From this user interaction, an individual feature weighting
scheme for similarity computation that represents the user’s organization pref-
erences is continously derived and used to adapt the collection organization.

Previously, we used greedy heuristics to learn this feature weighting scheme [7,
5, 6]. Using these heuristics, however, caused several problems: Since the values
of the feature weights could not be limited, extreme weighting schemes often
occured. Furthermore, the heuristics could not formally guarantee that all man-
ually moved objects are assigned to their target, and no additional constraints
could be formulated that could e.g. increase the interpretability of the result.

To address these problems, we have revised our adaptation method by using
quadratic optimization to derive the feature weights. This allows the introduction
of additional constraints on the feature weights and moreover guarantees to find
an optimal weighting scheme if it exists.

The remainder of this paper is organized as follows: Section 2 reviews crucial
aspects of the user-adaptive retrieval prototype. In Section 3, the new method
for weight adaptation is introduced. Subsequently, the experimental setup for
evaluation is explained in Section 4. Section 5 presents and discusses the results
of the experiments. Finally, we draw conclusions and point out directions for
future research in Section 6.

2 An Interactive Retrieval System based on a

Self-Organizing Map

In the following we review our adaptive retrieval system that we previously intro-
duced in [7]. We first decribe, how documents are preprocessed and represented.
Section 2.3 outlines, how the initial clustering is computed. Finally, the generic
principle of the adaptation algorithm is explained in Section 2.4.

2.1 Document Preprocessing and Representation

To be able to cluster text document collections, we have to map the text files
to numerical feature vectors. Therefore, we first applied standard preprocessing
methods, i.e., stopword filtering and stemming (using the Porter Stemmer [8]),
encoded each document using the vector space model [11] and finally selected a
subset of terms as features for the clustering process with a greedy heuristics.
These processing are briefly described in the following.

In the vector space model text documents are represented as vectors in an
m-dimensional space, i.e., each document j is described by a numerical feature
vector xj = (xj1, . . . , xjm). Each element of the vector represents a word of the
document collection, i.e., the size of the vector is defined by the number of words
of the complete document collection.

For a given document j xjk defines the importance of the word k in this
document with respect to the given document collection C. Large feature values
are assigned to terms that are frequent in relevant documents but rare in the
whole document collection [10]. Thus a feature xjk for a term k in document j
is computed as the term frequency tfjk times the inverse document frequency
idfk, which describes the term specificity within the document collection.

In [9] a scheme for computation of the features was proposed that has mean-
while proven its usability in practice. Besides term frequency and inverse docu-
ment frequency (defined as idfk = log(n/nk)), a length normalization factor is
used to ensure that all documents have equal chances of being retrieved inde-
pendent of their lengths:

xjk =
tfjk log n

nk
√

∑m

l=1

(

tfjl log n
nl

)2
, (1)

where n is the size of the document collection C, nk the number of documents
in C that contain term k, and m the number of terms that are considered.

Based on this scheme a document j is described by an m-dimensional vector
xj = (xj1, . . . , xjm) of term features and the similarity S of two documents (or
the similarity of a document and a query vector) can be computed based on the
inner product of the vectors (by which—if we assume normalized vectors—the
cosine between the two document vectors is computed), i.e.

S(xj ,xk) =
m

∑

l=1

xjl · xkl. (2)

For a more detailed discussion of the vector space model and weighting schemes
see, for instance, [1, 10, 11].

2.2 Index Term Selection

To reduce the number of words in the vector description we applied a simple
method for keyword selection by extracting keywords based on their entropy.
For each word k in the vocabulary the entropy as defined by [4] was computed:

Wk = 1 +
1

log
2
n

n
∑

j=1

pjk log
2
pjk with pjk =

tfjk
∑n

l=1
tf lk

, (3)

where tfjk is the frequency of word k in document j, and n is the number of
documents in the collection. Here the entropy gives a measure how well a word is
suited to separate documents by keyword search. For instance, words that occur
in many documents will have low entropy. The entropy can be seen as a measure
of the importance of a word in the given domain context. As index words a
number of words that have a high entropy relative to their overall frequency
have been chosen, i.e. of words occurring equally often those with the higher
entropy can be preferred. Empirically this procedure has been found to yield a
set of relevant words that are suited to serve as index terms [3].

However, in order to obtain a fixed number of index terms that appropriately
cover the documents, we applied a greedy strategy: From the first document in
the collection the term with the highest relative entropy is select as an index
term. Then, this document and all other documents containing this term are
marked. From the first of the remaining unmarked documents again the term

with the highest relative entropy is selected as an index term. Then again, this
document and all other documents containing this term are marked. This is
repeated until all documents have been marked. Subsequently, the documents
are unmarked and the process is started all over again. It can be terminated
when the desired number of index terms have been selected.

2.3 Initial Clustering

Representing documents as described in the preceding section and using the
cosine similarity measure, documents can be clustered by the growing self-
organizing map approach presented in [7]. The algorithm starts with a small
initial grid composed of hexagon cells, where each hexagon refers to a cluster
and is represented by a randomly initialized prototype feature vector. Each doc-
ument is then assigned to the most similar cluster in the grid resulting in an
update of the respective prototype and to some extend of the surrounding pro-
totypes (depending on a neighborhood function). Having all documents assigned
to the grid, the inner cluster distance can be computed. The clusters where it ex-
ceeds some predefined threshold are split resulting in a grown map. This process
is repeated until no more cells need to or can be split or an empty cell occurs (i.e.
a cluster with no assigned documents). It results in a two-dimensional topology
preserving the neighborhood relations of the high dimensional feature space. I.e.
not only documents within the same cluster are similar to each other but also
documents of clusters in the neighborhood are expected to be more similar than
those in more distant clusters. Using such a growing approach ensures that only
as many clusters are created as are actually needed.

2.4 User-Adaptivity

The algorithm outlined in Section 2.3 works in an unsupervised manner. It de-
pends only on the choice of the features for representation and the initial simi-
larity measure how documents are grouped. However, the user has often a better
intuition of a “correct” clustering. In cases where he does not agree on the clus-
ter assignment for a specific document, the user can change it by dragging the
document from a cell and drop it onto a different cell of the grid. In online mode,
the system will immediately react and modify the map, whereas in batch mode
it will wait until the user manually triggers the modification after he has made
several reassignments.

The remapping is performed by introducing feature weights that are used
during the similarity computation. The basic idea is to change the feature weights
for the similarity computation in such a way that the documents moved by the
user are now assigned to the desired clusters, i.e. the prototypes defining the
new cluster centers are more similar to the moved objects than the prototpyes
defining the original cluster centers.

While in prior work we used greedy heuristics to learn local or global weights
for each feature, i.e. weights that influence the importance of a term with respect
to the whole map or just with respect to a cell (see, e.g., [7, 5, 6]), we propose in

this work an optimization approach based on quadratic optimization as described
in the following. This approach works much more stable than the heuristics and
it is also possible to define constraints on the weight vector.

3 Quadratic Optimization

The problem of dragging documents as described above can be mapped to a
problem of cluster reassignement: Assume a document d that is assigned to a
cluster c1, i.e. for the similarity holds

sim(c1, d) < sim(ci, d) ∀i 6= 1. (4)

If c1 is dragged by a user to a cluster c2 we have to adapt the underlying similarity
measure such that now

sim(c2, d) < sim(ci, d) ∀i 6= 2 (5)

holds. If we assume that a user reassigns more than one document, a similar
constraint has to be defined for each reassigned document. In the following, this
process is described more formally.

3.1 Formalization

In order to solve the reassignement problem as described above using a quadratic
problem solver, we have to formulate our problem at hand appropriately. There-
fore, we make the following assumptions:

Let w := (w0, w1, ..., wm) be the weight vector used during similarity com-
putation, xj be a document vector describing a document dj as defined above
and sj be a vector defining a cluster prototype. Then we can define a weighted
similarity computation between document and protoype as follows:

S(xj , sk) =

m
∑

l=1

xjl · wl · skl. (6)

Thus, we can modify the influence of specific features (here words) during simi-
larity computation. If we initialize all weights wl with 1 we obtain the standard
inner product as defined above.

The task of our optimization problem is to increase the similarity of a docu-
ment to a target prototype ti (this is the cluster cell to which a user has moved
a document) such that this similarity is bigger than the similarity to all other
prototypes sk, in particular to the prototype of the cell to which the document
was initially assigned. Using the weighted similarity measure, this means that
we have to change the weights such that

m
∑

l=1

xjl · wl · til >
m

∑

l=1

xjl · wl · skl ∀k 6= i. (7)

Note that the change of the weight vector w should be as small as possible in
order to avoid too much corruption of the initial cluster assignments. Therefore,
we demand that the sum over all (quadratic) deviations of the weights from their
initial value 1 should be minimal (Eq. 8) and further that the weights should be
non-negative (Eq. 9) and the sum of all weights should always be m (Eq. 10).
If we furthermore assume, that we like to ensure that several documents can be
reassigned at the same time, we can now formulate this problem as a quadratic
optimization problem, i.e. we are looking for weights, such that we minimize

min
w∈ℜm

m
∑

l=1

(wl − 1)2 (8)

subject to the constraints

wl ≥ 0 ∀1 ≤ l ≤ m (9)

m
∑

l=1

wl = m (10)

m
∑

l=1

xjl · wl · t1l >

m
∑

l=1

xjl · wl · skl ∀k 6= i

m
∑

l=1

xjl · wl · t2l >

m
∑

l=1

xjl · wl · skl ∀k 6= i (11)

...
m

∑

l=1

xjl · wl · trl >

m
∑

l=1

xjl · wl · skl ∀k 6= i.

Here, Eq. 10 prevents very large weight values and Eq. 11 ensures that all r
documents that were moved by a user are assigned to the cluster cell specified
by the user.

3.2 Remarks

The changes of the underlying similarity measure based on the user’s mappings
might lead to a reassignment of further documents. This is intended, since we as-
sume that the resulting weight changes define the structuring criteria of the user.
This way, moving just a small number of object manually, many others could be
relocated automatically as a result of the adaption which saves additional effort
for the user.

The contraints defined by Eq. 11 can also be used to fix documents to specific
clusters, i.e. prevent them from being moved to other cluster cells during user
interaction with the system and the resulting weight adaptations. This can be
especially useful, if a user likes to ensure that typical objects are used as stable
reference landmarks in the mapping.

4 Experimental Setup

We conducted two experiments in which we simulate the user interaction with
the system. The general approach chosen is as follows:

modi fy o b j e c t s by add ing random f e a t u r e s

l e a r n map on mod i f i e d o b j e c t s

repeat

s e l e c t an o b j e c t o to be moved

s e l e c t most s i m i l a r c e l l c f o r o a c co r d i n g to u s e r

move o to c

u n t i l o cou ld not be moved

Given a set of objects described by some specific features, we assume that a
user would consider all of these features to be equally important and ignore any
other features when comparing the objects. A similarity measure according to the
user’s preferences would then just compare the relevant features. Consequently,
the initial similarity measure on the object set (weighting all features equally)
is regarded as ground truth.

In the first step, we add some “noise” to the object descriptions by adding
random features.1 Because the GSOM learning algorithm would ignore noisy
features that do not contain any information, the random feature values are
obtained as follows: Assuming that n features are to be added, random prototype
vectors for n groups are generated. These vectors are randomly initialized with
zeros and ones, where the proability for a one is log n/n. Afterwards, a gaussian
random number with a mean of 0.2 and standard deviation of 1.0 is added, thus
“blurring” the prototype vectors. For each object to be modified, a prototype
vector is randomly selected. The feature values to be added to the object’s
description are then generated by (again) adding a gaussian random number
with a mean of 0.2 and standard deviation of 1.0 to the respective feature value
of the prototype vector. This empirically derived procedure results in enough
information to significantly influence the map learning algorithm.

As a result of the added noise, the assignment of the objects to the map
differs from the simulated user’s point of view. Iteratively, he selects an objects
on the map, moves it to the best position according to his ground truth similarity
measure and lets the map update its feature weights. This process is repeated
until the selected object could not be moved because it is already at the desired
position or due to limitations of the adaptation algorithm that we will discuss
later in Section 5.1.2 In the following, we give details on the specific experiments,
particularly on the datasets, the methods for object selection and the evaluation
measures used.

1 Just masking out features instead of adding random ones does not work. Due to the
sparse nature of the document vectors, masking only few index terms already results
in documents that cannot be compared according to the user’s preferences because
they have no index terms anymore. However, to provide the adaption algorithm with
enough “room” for improvement, it would be necessary to mask many index terms.

2 It can happen very early in the process that the selected object is already at its best
position. Therefore, we checked not only one but up to 1% of all objects on the map.

4.1 Experiment 1

The first experiment was conducted on the dataset that has been already used
in [3] It comprises 1914 text documents taken from a news archive that covers
several scientific topics. The documents in the dataset had been already prepro-
cessed and 800 index terms had been selected using the method described in
Section 2.2.

For selection of the object to move, we distinguish between the following four
scenarios of user action simulation whose relations are depicted in Table 1:

1. Greedy selection of cell and object: First, the cell with the lowest average
pairwise (ground truth) similarity of the contained objects is chosen for
further investigation. Within this cell, the object with the lowest average
pairwise (ground truth) similarity with all other objects in the same cell is
selected to be moved.

2. Greedy selection of cell and random selection of object: The cell is chosen as
in the previous scenario. However, an arbitrary object is selected from this
cell.

3. Random selection of cell and greedy selection of object: Here, the cell is chosen
randomly whereas the object to be moved is selected from this cell by the
greedy approach used in scenario 1.

4. Random selection of cell and random selection of object: In this scenario,
both, the cell and the object to be moved from the cell, are selected randomly.

Note that scenario 3 appears to be the one that comes closest to the real use case
where a user does not look into all cells before picking an object to be moved
but within a specific cell tends to select the object that fits least into the cell
according to his preferences.

For the evaluation of the adaptation algorithm, we utilze the average top-

10 precision of the similarity measure on the object set: A ranked top-10 list
of similar objects is computed for each object according to the system’s current
similarity measure and compared with a ground truth top-10 list. The percentage
of matches is computed – ignoring the order of the ranking – and averaged over
all objects. This measure resembles a user’s natural way of assessing a retrieval
result where the correct order of relevance is less important than the actual
number of highly relevant objects within the first few items of a result list.

cell selection

greedy random

o
b

je
c
t

s
e
le

c
ti

o
n

greedy scenario 1 scenario 3

random scenario 2 scenario 4

Table 1. Relations of the four scenarios for user simulation.

4.2 Experiment 2

In this experiment we use a subset3 of the Banksearch dataset [12], a pre-
classified dataset containing 11,000 web pages from 11 different categories grouped
into 4 high-level topics (finance, programming, science, sports). The dataset used
in this experiment has been constructed as follows: 100 documents (i.e. 10%) were
selected for each of the 11 categories. The doucuments were preprocessed with
the same methods as the dataset in experiment 1. After index term selection,
documents with less than 5 index terms were removed resulting in a set of 947
documents described by 800 index terms.

In contrast to the first dataset, each document additionally contains infor-
mation about its topic class. This information is not used during training of the
map, however it is utilized to select the object to be moved. Analogously to the
first experiment, we regard four scenarios but replace the greedy heuristic by one
that is based on the class information: For each cell the majority and minority
class(es) are determined and the cell with the highest difference in the frequen-
cies of these classes is selected. Further, during the object selection step only
those objects belonging to a minority class of the cell are considered. Finally,
only those cells can be selected as target cell that have a majority class that
matches the class of the object to move.

This experiment resembles a use case where the user tries to sort objects
according to (subjective) classes unknown to the system. Apart from the top-
n precision that has also been applied here, we use the well-known evaluation
measures purity, inverse purity and f-measure as e.g. described in [2]. These
measures return values in the interval [0, 1], with 1 being the optimal value. The
purity measures the homogeneity of the resulting clusters and is 1, iff for each
cluster all contained objects belong to the same class. Whereas, the inverse purity
– also known as microaveraged precision – measures how stable the pre-defined
classes are when split up into clusters. It is 1, iff for each class all belonging
objects are grouped into a single cluster. The F-measure is similar to the inverse
purity. However, it punishes overly large clusters, as it includes the individual
precision of these clusters into the evaluation.

5 Results

5.1 Experiment 1

The results for experiment 1 are shown in Figure 1. For all scenarios and noise
levels the top-10 precision increased significantly to a value between 0.82 and 0.97
with a mean of 0.93. As expected, with an increasing level of noise in the data,
more objects need to be moved manually in order to reach an acceptable degree
of adaptation, yet – except for the highest noise level (100 random features) –
moving at most 1% of all objects was sufficient. This may, however, be very much
dependent on the object representation used. For text retrieval, feature vectors
are very sparse. This is probably disadvantageous for the adaptation algorithm,

3 A subset was taken to reduce the computational effort of the evalution.

 0

 1

 0 5 10

5 random features

 0

 1

 0 10 20

 0

 1

 0 10 20 30

 0

 1

 0 10 20

 0

 1

 0 10 20 30

10 random features

 0

 1

 0 10 20

 0

 1

 0 10 20 30

 0

 1

 0 10 20

 0

 1

 0 20 40

25 random features

 0

 1

 0 20 40

 0

 1

 0 20 40

 0

 1

 0 20 40 60

 0

 1

 0 20 40 60

50 random features

 0

 1

 0 20 40

 0

 1

 0 20 40 60

 0

 1

 0 20 40 60 80

 0

 1

 0 20 40 60

100 random features

 0

 1

 0 20 40 60 80

 0

 1

 0 20 40

 0

 1

 0 30 60 90 120

Fig. 1. Top-10 precision for experiment 1 with varying noise levels (number of random
features) against the number of iterations (number of manually moved objects) for the
four user simulation scenenarios (from top to bottom): (1) Greedy selection of cell and
object, (2) Greedy selection of cell and random selection of object, (3) Random selection
of cell and greedy selection of object, and (4) Random selection of cell and object. The
dotted vertical line at 20 iterations marks the point where 1% of the collection has
been moved manually by the simulated user.

as to adapt a feature’s weight, the feature needs to be present (i.e. non-zero) in
a moved object. Using feature vectors that are less sparse could result in faster
adaptation.

Surprisingly, the scenarios that used partly or fully random selection of the
object to move did not yield significantly worse results than the fully greedy
one. In some cases their maximum top-10 precision was even slightly better and
sometimes they converged faster to a good adaptation. Mostly, however, they
did not terminate as quickly, but this is not a problem because it only refers to
the simulation method and not to the adaptation algorithm itself.

On the other hand, the simulation sometimes terminated a little too early,
leaving still room for improvement as e.g. can be seen for scenario 1 with 5 or 10
random features. In about half of the cases the simulated user just did not find
any object to move (within the 1% analyzed). However, for the other half, the
adaptation algorithm was not able to compute new weights because adding the
constraints for the object to move caused an inconsistency in the system. I.e.
there is no feature weighting scheme such that the manually moved objects are
assigned to the map as desired by the user. This is a limitation of the proposed
adaptation algorithm that needs to be overcome in some way to not put the user
acceptance of the system at risk.

Further, a side-effect could be observed, that we want to illustrate by an
example, where the user simulation terminated early because of an inconsistency
in the system: Figure 2 shows the changes of the feature weights for scenario 1
with 10 random features. The mean weight of the random features decreases to
values close to zero but still leaving some non-zero weights because of the early
termination. At the same time, the mean weight of the other features slightly

0,0

0,5

1,0

1,5

0 10 20 30

number of objects moved manually

w
e

ig
h

ts
 o

f
o

ri
g

in
a

l
fe

a
tu

re
s

0,0

0,5

1,0

1,5

0 10 20 30

number of objects moved manually

w
e

ig
h

ts
 o

f
ra

n
d

o
m

 f
e

a
tu

re
s

Fig. 2. Weights (mean, maximum and minimum) for original (left) and added random
(right) features after each iteration for scenario 1 (greedy selection of cell and object)
with 10 random features.

increases due to the additional weight mass from the random features. However,
as the minima and maxima indicate, there are always some extreme weights.
Figure 3 shows a histogram of the weights for the original (i.e. non-random)
features after the last iteration. The weights that differ significantly from the
mean refer to index terms of the manually moved objects. They were especially
“emphasized” by the adaptation algorithm as only they can be used to decide
on the assignment of the manually moved objects to the map. Consequently,
the resulting histogram in Figure 3 differs from the ideal one where alle weights
are equal. However, as the adaptation algorithm favors weights close to 1.0 that
difference is rather small. It is further possible, that the values of the random
features to some extend correlate with the non-random ones and accidentally
capture some aspects of subgroups. Though this is rather unlikely in general, it
may cause side-effects in specific cases. However, this is caused by the evaluation
method and thus will not occur in real world applications.

5.2 Experiment 2

In this experiment, we again obtained similar results for all scenarios. Thus, we
confine ourselves in the following on the discussion of the results for scenario 1
(i.e. greedy object selection). Figure 4 shows the results on the second dataset

0,6

0,8

1

1,2

1,4

0 100 200 300 400 500 600 700

feature

w
e
ig
h
t

Fig. 3. Histogram of the weights for the original features after the last iteration for
scenario 1 (greedy selection of cell and object) with 10 random features.

 0

 1

 0 2 4 6 8 10

5
ra

nd
om

 fe
at

ur
es

4 classes

 0

 1

 0 1 2 3 4 5

11 classes top-10 prec.
purity

f-measure
inv. purity

 0

 1

 0 5 10 15 20

10
 r

an
do

m
 fe

at
ur

es

 0

 1

 0 1 2 3 4

 0

 1

 0 10 20 30 40 50 60 70

25
 r

an
do

m
 fe

at
ur

es

 0

 1

 0 10 20 30 40 50

 0

 1

 0 10 20 30 40 50

50
 r

an
do

m
 fe

at
ur

es

 0

 1

 0 10 20 30 40 50

 0

 1

 0 20 40 60 80

10
0

ra
nd

om
 fe

at
ur

es

 0

 1

 0 10 20 30

Fig. 4. Performance of the adaption method in experiment 2, using the 4 top-level
topics and the 11 low-level categories of the banksearch dataset as classes, with vary-
ing noise levels (number of random features) plotted against the number of iterations
(number of manually moved objects). Cell and object where selected greedily (scenario
1). The three dotted horizontal marker lines depict (from top to bottom) the baseline
values for purity, f-measure and inverse purity. The dotted vertical line at 10 iterations
marks the point where 1% of the collection has been moved manually by the simulated
user.

using the 4 top-level topics and the 11 low-level categories of the banksearch
dataset as classes. In all test cases the final value for purity, inverse purity and
f-measure came close to or exceeded the baseline value, that was obtained by
setting the weights of the random features to 0 and equally distributing the
weight mass on the remaining feature weights. The baseline values could be
exceeded by some extend through adaptation because here the additional class
information was used which was unknown to the map learning algorithm that
solely worked on the index terms as features. Especially, the greedy heuristic
applied for object selection favours cells with low purity. On the other hand, the
top-10 precision only increases up to some point. From there it slowly decreases
again. This is because the weight adaptation is not approximating a map that
was learned only on the original objects (i.e. without the noise) what would
optimize top-10 precision, but instead, tries to separate the classes.

6 Conclusions

In this contribution we presented a method for feature weight adaptation in order
to learn user specific structuring criteria. The approach is based on quadratic
optimization and ensures that an optimal weighting scheme can be found if
it exists. Furthermore, we evaluated the proposed method on two datasets by
simulating the interaction of a user with the system. Therefore, we modelled
different user types that simulated typical and worst case behaviors. We have
shown that the system was able to derive appropriate solutions for all scenarios.

In future work we will modify the optimization strategy such that at least
a sub-optimal solution is returned if no optimal one can be found. This is es-
pecially important for scenarios where the users structering criteria can not be
represented by the available document features.

References

1. W. R. Greiff. A theory of term weighting based on exploratory data analysis. In
21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, New York, NY, 1998. ACM.

2. A. Hotho, A. Nürnberger, and G. Paaß. A brief survey of text mining. GLDV-
Journal for Computational Linguistics and Language Technology, 20(1):19–62,
2005.

3. A. Klose, A. Nürnberger, R. Kruse, G. K. Hartmann, and M. Richards. Interactive
text retrieval based on document similarities. Physics and Chemistry of the Earth,
Part A: Solid Earth and Geodesy, 25(8):649–654, nov 2000.

4. K. E. Lochbaum and L. A. Streeter. Combining and comparing the effectiveness
of latent semantic indexing and the ordinary vector space model for information
retrieval. Information Processing and Management, 25(6):665–676, 1989.

5. A. Nürnberger and M. Detyniecki. Weighted self-organizing maps - incorporating
user feedback. In Artificial Neural Networks and Neural Information Processing -
ICANN/ICONIP 2003, Proc. of the joined 13th Int. Conf., 2003.

6. A. Nürnberger and M. Detyniecki. Externally growing self-organizing maps and its
application to e-mail database visualization and exploration. Applied Soft Com-
puting, 6(4):357–371, 2006.

7. A. Nürnberger and A. Klose. Improving clustering and visualization of multimedia
data using interactive user feedback. In Proc. of the 9th Int. Conf. on Infor-
mation Processing and Management of Uncertainty in Knowledge-Based Systems
(IPMU’02), 2002.

8. M. Porter. An algorithm for suffix stripping. Program, pages 130–137, 1980.
9. G. Salton, J. Allan, and C. Buckley. Automatic structuring and retrieval of large

text files. Communications of the ACM, 37(2):97–108, Feb 1994.
10. G. Salton and C. Buckley. Term weighting approaches in automatic text retrieval.

Information Processing & Management, 24(5):513–523, 1988.
11. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Communications of the ACM, 18(11):613–620, 1975. (see also TR74-218, Cornell
University, NY, USA).

12. M. Sinka and D. Corne. A large benchmark dataset for web document clustering.
In Soft Computing Systems: Design, Management and Applications, Vol. 87 of
Frontiers in Artificial Intelligence and Applications, pages 881–890, 2002.

